Browsing by Author "Antunes, Pedro R. S."
Now showing 1 - 10 of 22
Results Per Page
Sort Options
- Analysis of a class of boundary value problems depending on left and right Caputo fractional derivativesPublication . Antunes, Pedro R. S.; Ferreira, Rui A. C.In this work we study boundary value problems associated to a nonlinear fractional ordinary differential equation involving left and right Caputo derivatives. We discuss the regularity of the solutions of such problems and, in particular, give precise necessary conditions so that the solutions are C1([0, 1]). Taking into account our analytical results, we address the numerical solution of those problems by the augmented-RBF method. Several examples illustrate the good performance of the numerical method.
- Bound states in semi-Dirac semi-metalsPublication . Krejcirik, David; Antunes, Pedro R. S.New insights into transport properties of nanostructures with a linear dispersion along one direction and a quadratic dispersion along another are obtained by analysing their spectral stability properties under small perturbations. Physically relevant sufficient and necessary conditions to guarantee the existence of discrete eigenvalues are derived under rather general assumptions on external fields. One of the most interesting features of the analysis is the evident spectral instability of the systems in the weakly coupled regime. The rigorous theoretical results are illustrated by numerical experiments and predictions for physical experiments are made.
- Bounds and extremal domains for Robin eigenvalues with negative boundary parameterPublication . Antunes, Pedro R. S.; Freitas, Pedro; Krejcirik, DavidWe present some new bounds for the first Robin eigenvalue with a negative boundary parameter. These include the constant volume problem, where the bounds are based on the shrinking coordinate method, and a proof that in the fixed perimeter case the disk maximises the first eigenvalue for all values of the parameter. This is in contrast with what happens in the constant area problem, where the disk is the maximiser only for small values of the boundary parameter. We also present sharp upper and lower bounds for the first eigenvalue of the ball and spherical shells. These results are complemented by the numerical optimisation of the first four and two eigenvalues in two and three dimensions, respectively, and an evaluation of the quality of the upper bounds obtained. We also study the bifurcations from the ball as the boundary parameter becomes large (negative).
- Detection of holes in an elastic body based on eigenvalues and traces of eigenmodesPublication . Antunes, Pedro R. S.; Barbarosie, Cristian; Toader, Anca-MariaWe consider the numerical solution of an inverse problem of finding the shape and location of holes in an elastic body. The problem is solved by minimizing a functional depending on the eigenvalues and traces of corresponding eigenmodes. We use the adjoint method to calculate the shape derivative of this functional. The optimization is performed by BFGS, using a genetic algorithm as a preprocessor and the Method of Fundamental Solutions as a solver for the direct problem. We address several numerical simulations that illustrate the good performance of the method.
- Determination of elastic resonance frequencies and eigenmodes using the method of fundamental solutionsPublication . Alves, Carlos J. S.; Antunes, Pedro R. S.In this paper, we present the method of fundamental solutions applied to the determination of elastic resonance frequencies and associated eigenmodes. The method uses the fundamental solution tensor of the Navier equations of elastodynamics in an isotropic material. The applicability of the the method is justified in terms of density results. The accuracy of the method is illustrated through 2D numerical examples for the disk and non trivial shapes.
- Extremal p -Laplacian eigenvaluesPublication . Antunes, Pedro R. S.We study the shape optimization problem of variational Dirichlet and Neumann p-Laplacian eigenvalues, with area and perimeter constraints. We prove some results that characterize the optimizers and derive the formula for the Hadamard shape derivative of Neumann p-Laplacian eigenvalues. Then, we propose a numerical method based on the radial basis functions method to solve the eigenvalue problems associated to the p-Laplacian operator. Several numerical results are presented and some new conjectures are addressed.
- Harmonic configurations of non-homogeneous membranesPublication . Antunes, Pedro R. S.We consider the problem of finding composite membranes of drums that allow to have approximate harmonic relations involving some the smallest eigenfrequencies. This problem was already addressed in previous studies. Here we propose a numerical approach that allows to improve the results obtained in those references. We consider also the problem of finding optimal radial and continuous density in a circular membrane and the optimization problem of composite membranes with general shape. In both cases we describe numerical methods that allow to propose new configurations of membranes with approximate harmonic relations between some of the smallest eigenfrequencies.
- Improving the conditioning of the method of fundamental solutions for the Helmholtz equation on domains in polar or elliptic coordinatesPublication . Antunes, Pedro R. S.; Calunga, Hernani; Serranho, PedroA new approach to overcome the ill-conditioning of the Method of Fundamental Solutions (MFS) combining Singular Value Decomposition (SVD) and an adequate change of basis was introduced in [1] as MFS-SVD. The original formulation considered polar coordinates and harmonic polynomials as basis functions and is restricted to the Laplace equation in 2D. In this work, we start by adapting the approach to the Helmholtz equation in 2D and later extending it to elliptic coordinates. As in the Laplace case, the approach in polar coordinates has very good numerical results both in terms of conditioning and accuracy for domains close to a disk but does not perform so well for other domains, such as an eccentric ellipse. We therefore consider the MFS-SVD approach in elliptic coordinates with Mathieu functions as basis functions for the latter. We illustrate the feasibility of the approach by numerical examples in both cases.
- Is it possible to tune a drum?Publication . Antunes, Pedro R. S.It is well known that the sound produced by string instruments has a well defined pitch. Essentially, this is due to the fact that all the resonance frequencies of the string have integer ratio with the smallest eigenfrequency. However, it is enough to use Ashbaugh–Benguria bound for the ratio of the smallest two eigenfrequencies to conclude that it is impossible to build a drum with a uniform density membrane satisfying harmonic relations on the eigenfrequencies. On the other hand, it is known since the antiquity, that a drum can produce an almost harmonic sound by using different densities, for example adding a plaster to the membrane. This idea is applied in the construction of some Indian drums like the tabla or the mridangam. In this work we propose a density and shape optimization problem of finding a composite membrane that satisfy approximate harmonic relations of some eigenfrequencies. The problem is solved by a domain decomposition technique applied to the Method of Fundamental Solutions and Hadamard shape derivatives for the optimization of inner and outer boundaries. This method allows to present new configurations of membranes, for example a two-density membrane for which the first 21 eigenfrequencies have approximate five harmonic relations or a three-density membrane for which the first 45 eigenfrequencies have eight harmonic relations, both involving some multiple eigenfrequencies.
- Modelling silicosis: dynamics of a model with piecewise constant rate coefficientsPublication . Antunes, Pedro R. S.; Costa, Fernando Pestana da; Pinto, João Teixeira; Sasportes, RafaelWe study the dynamics about equilibria of an infinite dimensional system of ordinary differential equations of coagulation–fragmentation–death type that was introduced recently by da Costa et al. (Eur J Appl Math 31(6):950–967, 2020) as a model for the silicosis disease mechanism. For a class of piecewise constant rate coefficients an appropriate change of variables allows for the appearance of a closed finite dimensional subsystem of the infinite-dimensional system and the analysis of the eigenvalues of the linearizations of this finite dimensional subsystem about the equilibria is then used to obtain the results on the stability of the equilibria in the original infinite dimensional model.
- «
- 1 (current)
- 2
- 3
- »