Loading...
Research Project
Untitled
Funder
Authors
Publications
Deep Eutectic Solvents (DES) based on sulphur for silicon surfaces as alternative lubricants
Publication . Antunes, Mónica; Martins, Anne-Sophie; Freire, Mariana de Sá; Caetano, Fernando J. P.; Diogo, Herminio; Colaco, Rogério; Branco, Luís C.; Saramago, Benilde
Deep eutectic mixtures composed of hydrogen-bond donors and hydrogen-bond acceptors, the so-called DESs, have recently being proposed as possible “green” alternatives to mineral oils and ionic liquids (ILs) in the lubrication of steel surfaces. DESs have similar physical properties to ILs but have the advantage of being cheaper and easier to prepare. In this work, new DESs containing sulphur units in their structure were prepared and tested in the lubrication of silicon surfaces which are relevant for nano/microelectromechanical systems (NEMS/MEMS). The following new DESs were prepared: dibutil-ethyl sulfonium ethylsulfate: polyethylene glycol ([S4,4,2][EtSO4]:PEG), ethyl-tetrahydrothiophenium ethylsulfate: polyethylene glycol ([C2-THT][EtSO4]:PEG, cis-1-ethyl-3methylimidazolium canforsulfonate: polyethylene glycol ([C2MIM][(S)-CSA]:PEG), and 1,3-dimethylpiridinium methyl sulfate: polyethylene glycol ([C1-3-pic][MeSO4]:PEG). Other DES, already known, were tested for comparison purposes: tetrabutylammonium bromide: tetrahydrothiophene 1,1-dioxide ([N4,4,4,4][Br]:Sulfolane), choline chloride: polyethylene glycol (ChCl:PEG), and tetrabutylammonium bromide: polyethylene glycol ([N4,4,4,4][Br]:PEG). All DESs were characterized in terms of their water content, viscosity, wettability, and tribological properties. The friction coefficients were measured in a nanotribometer using steel spheres against Si surfaces. The new DES prepared from ILs based on the sulfur-containing anions showed good tribological performance, but the best results were obtained with [C2MIM][(S)-CSA]:PEG and [C1-3-pic][MeSO4]:PEG which reduced the friction coefficients to values < 0.1, typical of excellent lubrication conditions.
Viscosity measurements of compressed ionic liquid EMIM OTf
Publication . Sequeira, Maria Carolina; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
Ionic liquids have attracted considerable interest in recent years, as they can be used for multiple aims, namely, as antistatic agents, electrolytes, solvents, lubricants, and CO2 absorbents [1]. The use of ionic liquids in industrial processes require their thermophysical properties, in particular, the viscosity and the thermal conductivity. However, transport properties are scarce due to the difficulty of the measurements, particularly at pressures higher than the atmospheric pressure.
Our group has developed a programme of measurements aiming at obtaining rigorous results for the viscosity of ionic liquids using the vibrating wire method. This technique, although very accurate for molecular, non-conducting liquids, could have some difficulties with ionic liquids due to their electrical conductivity [2].
As we were planning to use the vibrating wire method in the forced mode of oscillation, the method requires the acquisition of the frequency response of the wire in a range of frequencies containing the velocity resonance for the transverse oscillations of the wire. Therefore, it is important to verify if the ionic liquid sample is a good electrolytic conductor in the range of frequencies that matter for the measurement of viscosity. The problematic of measuring the viscosity of ionic liquids both in general and in particular, using the vibrating wire technique was studied [3].
Pardal et al. [4] have used 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIMOTf) mixed with water as the electrolyte to successfully reduce CO2 at high pressure. The objective of this work is to contribute with viscosity data in the pressure and temperature range of the work performed by those authors. Therefore, we present new ionic viscosity results for temperatures between 298 K and 347 K and pressures up to 50 MPa.
Exploratory study on the viscosity of Poly(ethyleneglycols) and their mixtures with CO2
Publication . Sequeira, Maria Carolina; Pereira, Marta; Avelino, Helena Maria Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
Viscosity of liquid diethylene, triethylene and tetraethylene glycols at moderately high pressures using a vibrating wire instrument
Publication . Pereira, Marta F. V.; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
New viscosity measurements of compressed liquid diethylene glycol (DiEG), triethylene glycol (TriEG) and tetraethylene glycol (TeEG) have been performed using a vibrating wire instrument operated in the forced oscillation mode. The measurements have been carried out in a range of pressures up to 70 MPa and temperatures from (293 - 363) K, covering a total range of viscosities from (3.46 - 1.15 x 10^2) mPa,s.
Complementary experimental density data were obtained for the same glycols using an Anton Paar vibrating U-tube densimeter. These measurements have been performed in a range of temperatures from about (283 - 363) K and at pressures up to about 70MPa.
The viscosity results were correlated with density, using a modified hard-spheres scheme. The experimental density data were correlated, as a function of temperature and pressure, with a modified Tait-type equation.
The expanded uncertainty of the present viscosity results at a 95% confidence level is estimated to be less than ±2.0% for viscosities up to 68 mPa s and less than ±2.6% for higher viscosities. The densities have an expanded uncertainty of ±0.2% at a 95% confidence level.
Viscosity of liquid diethylene, triethylene and tetraethylene glycols at moderately high pressures using a vibrating wire instrument
Publication . Pereira, Marta F. V.; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
New viscosity measurements of compressed liquid diethylene glycol (DiEG), triethylene glycol (TriEG) and tetraethylene glycol (TeEG) have been performed using a vibrating wire instrument operated in the forced oscillation mode. The measurements have been carried out in a range of pressures up to 70 MPa and temperatures from (293–363) K, covering a total range of viscosities from (3.46–1.15 × 102) mPa⋅s.
Complementary experimental density data were obtained for the same glycols using an Anton Paar vibrating U-tube densimeter. These measurements have been performed in a range of temperatures from about (283–363) K and at pressures up to about 70 MPa.
The viscosity results were correlated with density, using a modified hard-spheres scheme. The experimental density data were correlated, as a function of temperature and pressure, with a modified Tait-type equation.
The expanded uncertainty of the present viscosity results at a 95% confidence level is estimated to be less than ±2.0% for viscosities up to 68 mPa s and less than ±2.6% for higher viscosities. The densities have an expanded uncertainty of ±0.2% at a 95% confidence level.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
5876
Funding Award Number
UID/QUI/00100/2013