Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • An approach using SAT solvers for the RCPSP with logical constraints
    Publication . Vanhoucke, Mario; Coelho, José
    This paper presents a new solution approach to solve the resource-constrained project scheduling problem in the presence of three types of logical constraints. Apart from the traditional AND constraints with minimal time-lags, these precedences are extended to OR constraints and bidirectional (BI) relations. These logical constraints extend the set of relations between pairs of activities and make the RCPSP definition somewhat different from the traditional RCPSP research topics in literature. It is known that the RCPSP with AND constraints, and hence its extension to OR and BI constraints, is NP-hard. The new algorithm consists of a set of network transformation rules that removes the OR and BI logical constraints to transform them into AND constraints and hereby extends the set of activities to maintain the original logic. A satisfiability (SAT) solver is used to guarantee the original precedence logic and is embedded in a metaheuristic search to resource feasible schedules that respect both the limited renewable resource availability as well as the precedence logic. Computational results on two well-known datasets from literature show that the algorithm can compete with the multi-mode algorithms from literature when no logical constraints are taken into account. When the logical constraints are taken into account, the algorithm can report major reductions in the project makespan for most of the instances within a reasonable time.
  • A new approach to minimize the makespan of various resource-constrained project scheduling problems
    Publication . Coelho, José; Vanhoucke, Mario
    This abstract presents a new solution approach to solve the resource-constrained project scheduling problem in the presence of multiple modes with mode identity constraints and two types of logical constraints. Apart from the traditional AND constraints with minimal time-lags, these precedences are extended to OR constraints. These logical constraints extend the set of relations between pairs of activities and make the RCPSP definition somewhat different from the traditional RCPSP research topics in literature. It is known that the RCPSP with AND constraints, and hence its extension to OR constraints, is NP-hard.
  • Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers
    Publication . Coelho, José; Vanhoucke, Mario
    This paper reports on a new solution approach for the well-known multi-mode resource-constrained project scheduling problem (MRCPSP). This problem type aims at the selection of a single activity mode from a set of available modes in order to construct a precedence and a (renewable and non-renewable) resource feasible project schedule with a minimal makespan. The problem type is known to be NP-hard and has been solved using various exact as well as (meta-)heuristic procedures. The new algorithm splits the problem type into a mode assignment and a single mode project scheduling step. The mode assignment step is solved by a satisfiability (SAT) problem solver and returns a feasible mode selection to the project scheduling step. The project scheduling step is solved using an efficient meta-heuristic procedure from literature to solve the resource-constrained project scheduling problem (RCPSP). However, unlike many traditional meta-heuristic methods in literature to solve the MRCPSP, the new approach executes these two steps in one run, relying on a single priority list. Straightforward adaptations to the pure SAT solver by using pseudo boolean non-renewable resource constraints has led to a high quality solution approach in a reasonable computational time. Computational results show that the procedure can report similar or sometimes even better solutions than found by other procedures in literature, although it often requires a higher CPU time.
  • The multi-mode resource-constrained project scheduling problem
    Publication . Coelho, José; Vanhoucke, Mario
    This chapter reports on a new solution approach for the multi-mode resource-constrained project scheduling problem (MRCPSP, MPS | prec | C max ). This problem type aims at the selection of a single activity mode from a set of available modes in order to construct a precedence and a (renewable and nonrenewable) resource-feasible project schedule with a minimal makespan. The problem type is known to be NP -hard and has been solved using various exact as well as (meta-)heuristic procedures. The new algorithm splits the problem type into a mode assignment and a single mode project scheduling step. The mode assignment step is solved by a satisfiability (SAT) problem solver and returns a feasible mode selection to the project scheduling step. The project scheduling step is solved using an efficient meta-heuristic procedure from literature to solve the resource-constrained project scheduling problem (RCPSP). However, unlike many traditional meta-heuristic methods in literature to solve the MRCPSP, the new approach executes these two steps in one run, relying on a single priority list. Straightforward adaptations to the pure SAT solver by using pseudo boolean nonrenewable resource constraints has led to a high quality solution approach in a reasonable computational time. Computational results show that the procedure can report similar or sometimes even better solutions than found by other procedures in literature, although it often requires a higher CPU time.
  • Hybrid tabu search and a truncated branch-and-bound for the unrelated parallel machine scheduling problem
    Publication . Sels, Veronique; Coelho, José; Dias, António Manuel; Vanhoucke, Mario
    We consider the problem of scheduling a number of jobs on a number of unrelated parallel machines in order to minimize the makespan. We develop three heuristic approaches, i.e., a genetic algorithm, a tabu search algorithm and a hybridization of these heuristics with a truncated branch-and-bound procedure. This hybridization is made in order to accelerate the search process to near-optimal solutions. The branch-and-bound procedure will check whether the solutions obtained by the meta-heuristics can be scheduled within a tight upper bound. We compare the performances of these heuristics on a standard dataset available in the literature. Moreover, the influence of the different heuristic parameters is examined as well. The computational experiments reveal that the hybrid heuristics are able to compete with the best known results from the literature.