Browsing by Author "Lytvynov, Eugene"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- An infinite dimensional umbral calculusPublication . Finkelshtein, Dmitri L.; Kondratiev, Yuri G.; Lytvynov, Eugene; Oliveira, Maria JoãoThe aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.
- Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysisPublication . Finkelshtein, Dmitri L.; Kondratiev, Yuri G.; Lytvynov, Eugene; Oliveira, Maria João; Streit, LudwigFor certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fréchet topological space of entire functions of exponential order $\alpha$ and minimal type. In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case.
- Stirling operators in spatial combinatoricsPublication . Finkelshtein, Dmitri; Kondratiev, Yuri; Lytvynov, Eugene; Oliveira, Maria João