Repository logo
 
Publication

Generators for the semigroup of endomorphisms of an independence Algebra

dc.contributor.authorAraújo, João
dc.date.accessioned2015-03-24T17:32:22Z
dc.date.available2015-03-24T17:32:22Z
dc.date.issued2002
dc.description.abstractGiven an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents.por
dc.identifier.citationAraújo, João - Generators for the semigroup of endomorphisms of an independence Algebra. "Algebra Colloquium" [Em linha]. ISSN 1005-3867 (Print) 0219-1733 (Online). Vol. 9, nº 4 (2002), p. 1-11por
dc.identifier.issn1005-3867
dc.identifier.issn0219-1733
dc.identifier.urihttp://hdl.handle.net/10400.2/3814
dc.language.isoporpor
dc.peerreviewedyespor
dc.subjectSemigroupspor
dc.subjectIndependence algebraspor
dc.subjectEndomorphismspor
dc.subjectGeneratorspor
dc.titleGenerators for the semigroup of endomorphisms of an independence Algebrapor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage11por
oaire.citation.startPage1por
oaire.citation.titleAlgebra Colloquiumpor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.givenNameJoão Jorge
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.orcid0000-0001-6655-2172
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2002Generators.pdf
Size:
389.83 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: