Publication
Generators for the semigroup of endomorphisms of an independence Algebra
dc.contributor.author | Araújo, João | |
dc.date.accessioned | 2015-03-24T17:32:22Z | |
dc.date.available | 2015-03-24T17:32:22Z | |
dc.date.issued | 2002 | |
dc.description.abstract | Given an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents. | por |
dc.identifier.citation | Araújo, João - Generators for the semigroup of endomorphisms of an independence Algebra. "Algebra Colloquium" [Em linha]. ISSN 1005-3867 (Print) 0219-1733 (Online). Vol. 9, nº 4 (2002), p. 1-11 | por |
dc.identifier.issn | 1005-3867 | |
dc.identifier.issn | 0219-1733 | |
dc.identifier.uri | http://hdl.handle.net/10400.2/3814 | |
dc.language.iso | por | por |
dc.peerreviewed | yes | por |
dc.subject | Semigroups | por |
dc.subject | Independence algebras | por |
dc.subject | Endomorphisms | por |
dc.subject | Generators | por |
dc.title | Generators for the semigroup of endomorphisms of an independence Algebra | por |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 11 | por |
oaire.citation.startPage | 1 | por |
oaire.citation.title | Algebra Colloquium | por |
person.familyName | Ribeiro Soares Gonçalves de Araújo | |
person.givenName | João Jorge | |
person.identifier.ciencia-id | EC1F-273A-9F24 | |
person.identifier.orcid | 0000-0001-6655-2172 | |
rcaap.rights | openAccess | por |
rcaap.type | article | por |
relation.isAuthorOfPublication | 1f7b349c-3251-480d-a3ac-e3cb4ef44f22 | |
relation.isAuthorOfPublication.latestForDiscovery | 1f7b349c-3251-480d-a3ac-e3cb4ef44f22 |