Logo do repositório
 
A carregar...
Miniatura
Publicação

A note on expansiveness and hyperbolicity for generic geodesic flows

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
MPAG.pdf1018.69 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In this short note we contribute to the generic dynamics of geodesic flows associated to metrics on compact Riemannian manifolds of dimension ≥ 2. We prove that there exists a C2-residual subset R of metrics on a given compact Riemannian manifold such that if g∈R, then its associated geodesic flow φ_g(t) is expansive if and only if the closure of the set of periodic orbits of φgt is a uniformly hyperbolic set. For surfaces, we obtain a stronger statement: there exists a C2-residual R such that if g ∈ R, then its associated geodesic flow φgt is expansive if and only if φ_g(t) is an Anosov flow.

Descrição

Palavras-chave

Expansiveness Residual sets Anosov Geodesic flows

Contexto Educativo

Citação

M. Bessa, A Note on Expansiveness and Hyperbolicity for Generic Geodesic Flows, Mathematical Physics, Analysis and Geometry, 21, 2, 2018

Unidades organizacionais

Fascículo