Repository logo
 
Publication

Combining sentiment analysis scores to improve accuracy of polarity classification in MOOC posts

datacite.subject.sdg04:Educação de Qualidadept_PT
dc.contributor.authorLaroca, Herbert
dc.contributor.authorRocio, Vitor
dc.date.accessioned2019-11-04T17:01:21Z
dc.date.available2019-11-04T17:01:21Z
dc.date.issued2019-09
dc.description.abstractSentiment analysis is a set of techniques that deal with the verification of sentiment and emotions in written texts. This introductory work aims to explore the combination of scores and polarities of sentiments (positive, neutral and negative) provided by different sentiment analysis tools. The goal is to generate a final score and its respective polarity from the normalization and arithmetic average scores given by those tools that provide a minimum of reliability. The texts analyzed to test our hypotheses were obtained from forum posts from participants in a massive open online course (MOOC) offered by Universidade Aberta de Portugal, and were submitted to four online service APIs offering sentiment analysis: Amazon Comprehend, Google Natural Language, IBM Watson Natural Language Understanding, and Microsoft Text Analytics. The initial results are encouraging, suggesting that the average score is a valid way to increase the accuracy of the predictions from different sentiment analyzers.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-030-30241-2_4
dc.identifier.urihttp://hdl.handle.net/10400.2/8703
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer International Publishingpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectSentiment analysispt_PT
dc.subjectMassive open online coursept_PT
dc.subjectPolarity scorespt_PT
dc.titleCombining sentiment analysis scores to improve accuracy of polarity classification in MOOC postspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceVila Realpt_PT
oaire.citation.endPage46pt_PT
oaire.citation.startPage35pt_PT
oaire.citation.titleProgress in Artificial Intelligence.19th EPIA Conference on Artificial Intelligencept_PT
oaire.citation.volume11804pt_PT
person.familyNameLaroca Mendes Pinto
person.familyNameRocio
person.givenNameHerbert
person.givenNameVitor
person.identifierR-000-HKF
person.identifier.ciencia-id0418-C5A8-59E2
person.identifier.orcid0000-0002-0362-6100
person.identifier.orcid0000-0002-3314-898X
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication3f7a2cd7-39ec-41bf-88cd-4966e2bfb323
relation.isAuthorOfPublication7cab4248-456c-46bf-a1cf-bbd212928171
relation.isAuthorOfPublication.latestForDiscovery3f7a2cd7-39ec-41bf-88cd-4966e2bfb323

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
artigo_epia_revisado_20190617.pdf
Size:
240.02 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: