Repository logo
 
Publication

Limits of tangents of quasi-ordinary hypersurfaces

dc.contributor.authorAraújo, António
dc.contributor.authorNeto, Orlando
dc.date.accessioned2013-12-17T11:53:27Z
dc.date.available2013-12-17T11:53:27Z
dc.date.issued2013-01
dc.description.abstractWe compute explicitly the limits of tangents of a quasi-ordinary singularity in terms of its special monomials. We show that the set of limits of tangents of Y is essentially a topological invariant of Y .por
dc.identifier.citationAraújo, António; Neto, Orlando - Limits of tangents of quasi-ordinary hypersurfaces. " Proceedings of the American Mathematical" ISSN 0002-9939 (Print) 1088-6826 (Online). Vol. 141, Nº 1, (Jan. 2013), p. 1–11por
dc.identifier.issn0002-9939
dc.identifier.issn1088-6826
dc.identifier.urihttp://hdl.handle.net/10400.2/2719
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherAmerican Mathematical Societypor
dc.relation.publisherversionDOI S0002-9939(2012)11126-8por
dc.subjectQuasi-ordinarypor
dc.subjectLimits of tangentspor
dc.subjectSingularitiespor
dc.subjectHypersurfacespor
dc.titleLimits of tangents of quasi-ordinary hypersurfacespor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceProvidence, R.I.por
oaire.citation.endPage10por
oaire.citation.startPage1por
oaire.citation.titleProceedings of the American Mathematical Societypor
oaire.citation.volume141por
person.familyNameAraújo
person.givenNameAntónio
person.identifier.ciencia-idB113-5CDF-F72D
person.identifier.orcid0000-0003-0909-5782
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublicationb49f67c9-fb5b-4de4-a12c-a63d72fd2e4c
relation.isAuthorOfPublication.latestForDiscoveryb49f67c9-fb5b-4de4-a12c-a63d72fd2e4c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
limits of tangents.pdf
Size:
156.58 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: