Repository logo
 
Publication

Minimal paths in the commuting graphs of semigroups

dc.contributor.authorAraújo, João
dc.contributor.authorKinyon, Michael
dc.contributor.authorKonieczny, Janusz
dc.date.accessioned2011-12-19T15:17:14Z
dc.date.available2011-12-19T15:17:14Z
dc.date.issued2011
dc.description.abstractLet S be a finite non-commutative semigroup. The commuting graph of S, denoted G(S), is the graph whose vertices are the non- central elements of S and whose edges are the sets {a, b} of vertices such that a �= b and ab = ba. Denote by T(X) the semigroup of full transformations on a finite set X . Let J be any ideal of T (X ) such that J is different from the ideal of constant transformations on X. We prove that if |X| ≥ 4, then, with a few exceptions, the diameter of G(J ) is 5. On the other hand, we prove that for every positive integer n, there exists a semigroup S such that the diameter of G(S) is n. We also study the left paths in G(S), that is, paths a1 − a2 − ··· − am such that a1 �= am and a1ai = amai for all i ∈ {1,...,m}. We prove that for every positive integer n ≥ 2, except n = 3, there exists a semigroup whose shortest left path has length n. As a corollary, we use the previous results to solve a purely algebraic old problem posed by B.M. Schein.por
dc.identifier.citationAraújo, João; Kinyon, Michael; Konieczny, Janusz - "European Journal of Combinatorics" [Em linha]. ISSN 0195-6698. Vol. 32, nº 2 (2011), p. 178-197por
dc.identifier.urihttp://hdl.handle.net/10400.2/2007
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0195669810001265por
dc.subjectGroups
dc.titleMinimal paths in the commuting graphs of semigroupspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage197por
oaire.citation.startPage178por
oaire.citation.titleEuropean Journal of Combinatoricspor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.familyNameKinyon
person.givenNameJoão Jorge
person.givenNameMichael Kinyon
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.ciencia-id2A10-E0DD-5A23
person.identifier.orcid0000-0001-6655-2172
person.identifier.orcid0000-0002-5227-8632
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication0379041c-7e5e-4875-9f98-801efefa6330
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
3.pdf
Size:
493.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: