Repository logo
 
Loading...
Thumbnail Image
Publication

Minimal paths in the commuting graphs of semigroups

Use this identifier to reference this record.
Name:Description:Size:Format: 
3.pdf493.09 KBAdobe PDF Download

Advisor(s)

Abstract(s)

Let S be a finite non-commutative semigroup. The commuting graph of S, denoted G(S), is the graph whose vertices are the non- central elements of S and whose edges are the sets {a, b} of vertices such that a �= b and ab = ba. Denote by T(X) the semigroup of full transformations on a finite set X . Let J be any ideal of T (X ) such that J is different from the ideal of constant transformations on X. We prove that if |X| ≥ 4, then, with a few exceptions, the diameter of G(J ) is 5. On the other hand, we prove that for every positive integer n, there exists a semigroup S such that the diameter of G(S) is n. We also study the left paths in G(S), that is, paths a1 − a2 − ··· − am such that a1 �= am and a1ai = amai for all i ∈ {1,...,m}. We prove that for every positive integer n ≥ 2, except n = 3, there exists a semigroup whose shortest left path has length n. As a corollary, we use the previous results to solve a purely algebraic old problem posed by B.M. Schein.

Description

Keywords

Groups

Citation

Araújo, João; Kinyon, Michael; Konieczny, Janusz - "European Journal of Combinatorics" [Em linha]. ISSN 0195-6698. Vol. 32, nº 2 (2011), p. 178-197

Research Projects

Organizational Units

Journal Issue