Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.07 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Nas últimas décadas a utilização da inteligência artificial tem sido frequente no desenvolvimento de aplicações computacionais. Mais recentemente a aprendizagem automática, especialmente pelo uso da aprendizagem profunda (deep learning), tem impulsionado o crescimento e ampliado o desenvolvimento de sistemas inteligentes para diferentes domínios. No cenário atual de crescimento tecnológico estão a surgir com maior frequência os sistemas de recomendação (recommender systems) com diferentes técnicas para a filtragem de informações em grandes bases de dados. Um desafio é prover a recomendação adaptativa para mitigar a sobrecarga de informações em ambientes on-line. Este artigo revisa trabalhos anteriores e aborda alguns dos aspectos teórico-conceptuais e teórico-práticos que constituem os sistemas de recomendação, caracterizando o emprego de redes neuronais profundas (Deep Neural Network – DNN) para prover a recomendação sequencial apoiada pela recomendação baseada em sessão.
In recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation.
In recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation.
Description
Keywords
Sistemas de recomendação Filtragem de informação Recomendação com DNN Recomendação sequencial Recomendação baseada em sessão Recommender systems Information filtering DNN recommendation Sequential recommendation Session-based recommendation
Citation
Azambuja, Rogério Xavier de; Morais, A. Jorge; Filipe, Filipe - Teoria e prática em sistemas de recomendação. "Revista de Ciências da Computação" [Em linha]. ISSN 1646-6330 (Print) 2182-1801 (Online). Vol. 16 (2021), p. 23-46
Publisher
Universidade Aberta