Name: | Description: | Size: | Format: | |
---|---|---|---|---|
795.36 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Nesta dissertação estudamos o artigo de Bjorn Poonen [Poo03b], Hilbert‘s tenth problem and Mazur‘s conjecture
for large subrings of Q e investigamos computacionalmente os diversos conjuntos caracterizados no
artigo.
Começamos por introduzir a teoria referente às variedades algébricas e às curvas elípticas , conceitos necessários
ao entendimento do artigo em estudo.
No artigo de Poonen é demonstrada a inexistência dum algoritmo para decidir se equações polinomiais com
coeficientes em certos subanéis de Q têm ou não solução nesses subanéis ou seja o 10o problema de Hilbert
para esses anéis tem uma solução negativa. A ideia da prova é a partir duma curva elíptica construir um modelo
diofantino do anel Z. Com esse fim, partindo duma curva elíptica estuda-se alguns conjuntos infinitos
de números primos que são recursivos.
Na parte prática da dissertação definimos alguns algoritmos e calculamos alguns elementos destes conjuntos.
This thesis studies the article Bjorn Poonen, Hilbert‘s tenth problem and Mazur‘s conjecture for large subrings of Q and investigates computationally the various sets featured in the article. We begin by introducing the basic theory of algebraic varieties and elliptic curves, concepts necessary for understanding the article under consideration. In Poonen article the absence of an algorithm to decide if polynomial equations with coefficients in certain subrings of Q have solutions in those subrings is proved, that is, Hilbert‘s tenth problemfor these rings has a negative solution. The idea of proof is to use an elliptic curve to build a diophantine model of the ring Z. To this end, we study some infinite recursive sets of primes that are built from an elliptic curve. The idea of proof is of an elliptic curve from building a diophantine model of the Z ring To this end, and from a elliptic curve is studied some infinite sets of primes that are recursive. In the practical part of the thesis we define algorithms and calculate some elements of these sets.
This thesis studies the article Bjorn Poonen, Hilbert‘s tenth problem and Mazur‘s conjecture for large subrings of Q and investigates computationally the various sets featured in the article. We begin by introducing the basic theory of algebraic varieties and elliptic curves, concepts necessary for understanding the article under consideration. In Poonen article the absence of an algorithm to decide if polynomial equations with coefficients in certain subrings of Q have solutions in those subrings is proved, that is, Hilbert‘s tenth problemfor these rings has a negative solution. The idea of proof is to use an elliptic curve to build a diophantine model of the ring Z. To this end, we study some infinite recursive sets of primes that are built from an elliptic curve. The idea of proof is of an elliptic curve from building a diophantine model of the Z ring To this end, and from a elliptic curve is studied some infinite sets of primes that are recursive. In the practical part of the thesis we define algorithms and calculate some elements of these sets.
Description
Dissertação de Mestrado em Estatística, Matemática e Computação apresentada à Universidade Aberta
Keywords
Matemática Estatística Computação Algorítmos Álgebra Curvas elípticas Hilbert‘s tenth problem Diophantine model Elliptic curve
Citation
Raimundo, António Pedro da Silva - 10º problema de Hilbert para subanéis de Q [Em linha]. Lisboa : [s.n.], 2014. 90 p.