Repository logo
 
Publication

A well conditioned method of fundamental solutions for laplace equation

dc.contributor.authorAntunes, Pedro R. S.
dc.date.accessioned2022-03-24T12:05:28Z
dc.date.available2023-03-23T01:30:22Z
dc.date.issued2022
dc.description.abstractThe method of fundamental solutions (MFS) is a numerical method for solving boundary value problems involving linear partial differential equations. It is well known that it can be very effective assuming regularity of the domain and boundary conditions. The main drawback of the MFS is that the matrices involved typically are ill-conditioned and this may prevent to achieve high accuracy. In this work, we propose a new algorithm to remove the ill conditioning of the classical MFS in the context of Laplace equation defined in planar domains. The main idea is to expand the MFS basis functions in terms of harmonic polynomials. Then, using the singular value decomposition and Arnoldi orthogonalization we define well conditioned basis functions spanning the same functional space as the MFS's. Several numerical examples show that this approach is much superior to previous approaches, such as the classical MFS or the MFS-QR.pt_PT
dc.description.sponsorshipThe research was partially supported by FCT, Portugal, through the scientific project UIDB/00208/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.issn1017-1398
dc.identifier.issn1572-9265
dc.identifier.urihttp://hdl.handle.net/10400.2/11856
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationGroup of Mathematical Physics of the University of Lisbon
dc.titleA well conditioned method of fundamental solutions for laplace equationpt_PT
dc.typepreprint
dspace.entity.typePublication
oaire.awardTitleGroup of Mathematical Physics of the University of Lisbon
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00208%2F2020/PT
oaire.citation.titleNumerical Algorithmspt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameAntunes
person.givenNamePedro
person.identifier.ciencia-id6710-138C-A69D
person.identifier.orcid0000-0003-1969-1860
person.identifier.ridM-2406-2015
person.identifier.scopus-author-id55346859100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typepreprintpt_PT
relation.isAuthorOfPublicationbef314d2-4a78-4fba-aecd-9f4e8e19e70c
relation.isAuthorOfPublication.latestForDiscoverybef314d2-4a78-4fba-aecd-9f4e8e19e70c
relation.isProjectOfPublicationa79ad082-93a2-48af-acd1-6c5f0fb42899
relation.isProjectOfPublication.latestForDiscoverya79ad082-93a2-48af-acd1-6c5f0fb42899

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MFS-SVD.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format