Logo do repositório
 
A carregar...
Miniatura
Publicação

A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
2021CMP.pdf1.19 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $\mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szeg\"o type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.

Descrição

Palavras-chave

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo