Repository logo
 
Publication

Genericity of trivial Lyapunov spectrum for L-cocycles derived from second order linear homogeneous differential equations

dc.contributor.authorAmaro, Dinis
dc.contributor.authorBessa, Mário
dc.contributor.authorVilarinho, Helder
dc.date.accessioned2024-11-08T10:01:36Z
dc.date.available2024-11-08T10:01:36Z
dc.date.issued2024
dc.description.abstractWe consider a probability space M on which an ergodic flow is defined. We study a family of continuous-time linear cocycles, referred to as kinetic, that are associated with solutions of the second-order linear homogeneous differential equation . Our main result states that for a generic subset of kinetic continuous-time linear cocycles, where generic means a Baire second category with respect to an -like topology on the infinitesimal generator, the Lyapunov spectrum is trivial.pt_PT
dc.description.sponsorshipDA and HV were partially supported by FCT - Fundação para a Ciência e a Tecnologia, through Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, project UID/00212/2020. MB was partially supported by CMUP, which is financed by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020 and also partially supported by the Project ‘Means and Extremes in Dynamical Systems’ (PTDC/MAT-PUR/4048/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.jde.2023.10.033pt_PT
dc.identifier.issn0022-0396
dc.identifier.urihttp://hdl.handle.net/10400.2/16744
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationCentre of Mathematics of the University of Porto
dc.relationMeans and Extremes in Dynamical Systems
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022039623006836pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectKinetic cocyclespt_PT
dc.subjectLinear cocyclespt_PT
dc.subjectLinear differential systemspt_PT
dc.subjectMultiplicative ergodic theorempt_PT
dc.subjectLyapunov exponentspt_PT
dc.subjectRandom dynamical systemspt_PT
dc.titleGenericity of trivial Lyapunov spectrum for L-cocycles derived from second order linear homogeneous differential equationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre of Mathematics of the University of Porto
oaire.awardTitleMeans and Extremes in Dynamical Systems
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00144%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/Concurso de Projetos IC&DT em Todos os Domínios Científicos/PTDC%2FMAT-PUR%2F4048%2F2021/PT
oaire.citation.endPage253pt_PT
oaire.citation.startPage228pt_PT
oaire.citation.titleJournal of Differential Equationspt_PT
oaire.citation.volume380pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamConcurso de Projetos IC&DT em Todos os Domínios Científicos
person.familyNameBessa
person.familyNameSoares Vilarinho
person.givenNameMário
person.givenNameHélder
person.identifierhttps://scholar.google.com/citations?user=088yCR4AAAAJ&hl=pt-PT
person.identifier.ciencia-idC21A-EEC0-A3EF
person.identifier.ciencia-id031A-911B-26F5
person.identifier.orcid0000-0002-1758-2225
person.identifier.orcid0000-0002-9822-5341
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2dd300f3-9f00-49de-9333-78ec0511220e
relation.isAuthorOfPublicationcf085d2d-c18f-4a07-b2d7-7a2334cf8e37
relation.isAuthorOfPublication.latestForDiscovery2dd300f3-9f00-49de-9333-78ec0511220e
relation.isProjectOfPublication0a94dfb4-af3e-4a08-a617-138dec436018
relation.isProjectOfPublication84575246-fb1c-44bf-96bf-31d868ea4225
relation.isProjectOfPublication.latestForDiscovery0a94dfb4-af3e-4a08-a617-138dec436018

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0022039623006836-main.pdf
Size:
376.9 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: