Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Density and Rheology of Tris(2-ethylhexyl) Trimellitate (TOTM)
Publication . Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Diogo, João C. F.; Fareleira, João M. N. A.; Pereira, Marta F. V.; Santos, Fernando J. V.; Santos, Tânia V. M.; Wakeham, William A.
This article presents new density data and some rheological studies on tris(2-ethylhexyl) trimellitate (TOTM) which has recently been proposed as a reference fluid for viscosity at high temperatures and high pressures. The density data have been obtained with the aid of an Anton Paar DMA HP U-tube instrument, covering temperatures from 328 to 423 K and pressures up to 70 MPa, and they are aimed at extending the temperature range of previous results. They are also used to check the effect of interlot consistency of the density data for TOTM. The present density measurements are compared with previously published data. Rheological tests were carried out to complement earlier studies. Particular attention is given to the shear rate range of greatest interest for the proposed use of TOTM as an industrial reference fluid for viscosity: the tests include shear stresses up to 750 Pa and shear rates up to 4000 s–1 under atmospheric pressure. The tests were carried out using a Parallel Plate Rheometer AR1500ex10C4298. The results at a temperature of 298 K corroborate the previous findings that TOTM is Newtonian below a shear rate of 600 s–1, which is entirely compatible with its use as an industrial calibrating fluid for viscosity. At shear rates higher than 600 s–1 a shear-thinning like behavior is observed.
Viscosity and density measurements on liquid n-tetradecane at moderately high pressures
Publication . Santos, Tânia V. M.; Pereira, Marta F. V.; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
The main aim of the work is to study the viscosity and density of compressed normal tetradecane in the region of pressures from saturation to 10 MPa, where the available literature data are scarce. New measurements of the viscosity of n-tetradecane (n-C-14) along eight isotherms in the range (283-358) K and at pressures up to 70 MPa, have been performed using the vibrating wire technique in the forced mode of operation. Density measurements have also been performed along nine isotherms in the temperature range from (283 to 373) K and pressures from (0.1 to 70) MPa. The vibrating wire viscosity results were correlated with density, using a modified hard-spheres scheme. The root mean square (rms) deviation of the data from the correlation is less than 0.32% and the maximum absolute relative deviation is less than 1.0%. The expanded uncertainty of the present viscosity data is estimated as +/- 1.5% at a 95% confidence level. The density results were correlated with the temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density data is estimated as +/- 0.2% at a 95% confidence level. The isothermal compressibility and the isobaric thermal expansion were calculated by differentiation of the modified Tait equation. The uncertainties of isothermal compressibility and the isobaric thermal expansion are estimated to be less than +/- 1.7% and +/- 1.1%, respectively, at a 95% confidence level. The results are compared with the available literature data. (C) 2017 Elsevier B.V. All rights reserved.
On the viscosity and other properties of poly(Ethylene Glycol) 600
Publication . Pereira, Marta F. V.; Santos, Tânia V. M.; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
Quest for a reference standard for viscosity at high temperatures and high pressures
Publication . Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Diogo, João C. F.; Fareleira, João M. N. A.; Pereira, Marta F. V.; Santos, Fernando J. V.; Santos, Tânia V. M.; Wakeham, William A.
This communication is dedicated to give notice of the present situation concerning the proposal of tris(2-ethylhexyl) trimellitate (TOTM) to be a reference standard fluid for viscosity at high temperatures and high pressures. This proposal stems from an internal project of the International Association for Transport Properties (IATP). A general overview of the efforts carried out so far by the scientific community towards that objective will be made. This will be complemented by a description of its main characteristics that support its proposal. In particular, the present work is concerned with the determination of the shear dependence of the viscosity of TOTM. Moreover, new results for the density of TOTM at moderately high temperatures and pressures up to 70 MPa are presented.
In pursuit of a high-temperature, high-pressure, high-viscosity standard: the case of Tris(2-ethylhexyl) Trimellitate
Publication . Wakeham, William A.; Assael, Marc J.; Avelino, Helena Maria da Nóbrega Teixeira; Bair, Scott; Baled, Hseen O.; Bamgbade, Babatunde A.; Bazile, Jean-Patrick; Caetano, Fernando J. P.; Comunas, Maria J. P.; Daridon, Jean-Luc; Diogo, João C. F.; Enick, Robert M.; Fareleira, João M. N. A.; Fernandez, Josefa; Oliveria, M. Conceicao; Santos, Tânia V. M.; Tsolakidou, Chrysi M.
This paper presents a reference correlation for the-viscosity of tris(2-ethylhexyl) trimellitate designed to serve in industrial applications for the calibration of viscometers at elevated temperatures and pressures such as those encountered in the exploration of oil reservoirs and in lubrication. Tris(2-ethylhexyl) trimellitate has been examined with respect to the criteria necessary for an industrial standard reference material such as toxicity, thermal stability, and variability among manufactured lots. The viscosity correlation has been based upon all of the data collected in a multinational project and is supported by careful measurements and analysis of all the supporting thermophysical property data that are needed to apply the standard for calibration to a wide variety of viscometers. The standard reference viscosity data cover temperatures from 303 to 473 K, pressures from 0.1 to 200 MPa, and viscosities from approximately 1.6 to 755 mPa s. The uncertainty in the data provided is of the order of 3.2% at 95% confidence level, which is thought to be adequate for most industrial applications.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

PEst-OE/QUI/UI0100/2013

ID