Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Bounds and extremal domains for Robin eigenvalues with negative boundary parameter
    Publication . Antunes, Pedro R. S.; Freitas, Pedro; Krejcirik, David
    We present some new bounds for the first Robin eigenvalue with a negative boundary parameter. These include the constant volume problem, where the bounds are based on the shrinking coordinate method, and a proof that in the fixed perimeter case the disk maximises the first eigenvalue for all values of the parameter. This is in contrast with what happens in the constant area problem, where the disk is the maximiser only for small values of the boundary parameter. We also present sharp upper and lower bounds for the first eigenvalue of the ball and spherical shells. These results are complemented by the numerical optimisation of the first four and two eigenvalues in two and three dimensions, respectively, and an evaluation of the quality of the upper bounds obtained. We also study the bifurcations from the ball as the boundary parameter becomes large (negative).
  • Bound states in semi-Dirac semi-metals
    Publication . Krejcirik, David; Antunes, Pedro R. S.
    New insights into transport properties of nanostructures with a linear dispersion along one direction and a quadratic dispersion along another are obtained by analysing their spectral stability properties under small perturbations. Physically relevant sufficient and necessary conditions to guarantee the existence of discrete eigenvalues are derived under rather general assumptions on external fields. One of the most interesting features of the analysis is the evident spectral instability of the systems in the weakly coupled regime. The rigorous theoretical results are illustrated by numerical experiments and predictions for physical experiments are made.