Repository logo
 
Loading...
Profile Picture
Person

Avelino, Helena Maria da Nóbrega Teixeira

Search Results

Now showing 1 - 4 of 4
  • Viscosity of liquid diethylene, triethylene and tetraethylene glycols at moderately high pressures using a vibrating wire instrument
    Publication . Pereira, Marta F. V.; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
    New viscosity measurements of compressed liquid diethylene glycol (DiEG), triethylene glycol (TriEG) and tetraethylene glycol (TeEG) have been performed using a vibrating wire instrument operated in the forced oscillation mode. The measurements have been carried out in a range of pressures up to 70 MPa and temperatures from (293 - 363) K, covering a total range of viscosities from (3.46 - 1.15 x 10^2) mPa,s. Complementary experimental density data were obtained for the same glycols using an Anton Paar vibrating U-tube densimeter. These measurements have been performed in a range of temperatures from about (283 - 363) K and at pressures up to about 70MPa. The viscosity results were correlated with density, using a modified hard-spheres scheme. The experimental density data were correlated, as a function of temperature and pressure, with a modified Tait-type equation. The expanded uncertainty of the present viscosity results at a 95% confidence level is estimated to be less than ±2.0% for viscosities up to 68 mPa s and less than ±2.6% for higher viscosities. The densities have an expanded uncertainty of ±0.2% at a 95% confidence level.
  • Viscosity measurements of poly(ethyleneglycol) 400 [PEG 400] at temperatures from 293 K to 348 K and at pressures up to 50 MPa using the vibrating wire technique
    Publication . Sequeira, Maria Carolina; Pereira, Marta F. V.; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
    The article reports new measurements of the viscosity of Poly(ethyleneglycol) 400 [PEG 400] in the range (293–348) K and pressures up to 50 MPa. Complementary measurements of the density of the same sample of PEG 400 have been made covering the ranges of temperature and pressure, (293–353) K and (0.1–50) MPa, respectively. The viscosity measurements were performed using the vibrating wire technique in the forced mode of oscillation and the density measurements were carried out with an Anton Paar vibrating U-tube densimeter. The density raw data were corrected for viscosity effects. The overall uncertainty of the viscosity measurements is estimated to be less than ±2% for viscosities up to 68 mPa s and less than ±2.6% for higher viscosities. The densities have an estimated overall uncertainty of ±0.2%. The rheological behaviour of Poly(ethylene Glycol) 400 has also been studied, using a cone-plate Brookfield viscometer, in a temperature range between (293 and 333) K. The measurements were carried out at shear rates up to 20 s−1 and shear stresses up to 2.20 Pa and have evidenced Newtonian behaviour. The viscosity data obtained were correlated by means of a modified hard-sphere based correlation technique. The relative root mean square, rms, deviation of the experimental results from the correlation equations is 0.54%, and their bias is practically zero. The density data obtained were correlated using a Tait-type equation. As a complement of the present study, the surface tension of PEG 400 was measured by the pendant drop method. This study aims to be useful for viscosity measurements using capillary viscometers. As far as the authors are aware, the present viscosity measurements are the first results to be published for PEG 400 at pressures higher than atmospheric pressure.
  • Viscosity of liquid diethylene, triethylene and tetraethylene glycols at moderately high pressures using a vibrating wire instrument
    Publication . Pereira, Marta F. V.; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
    New viscosity measurements of compressed liquid diethylene glycol (DiEG), triethylene glycol (TriEG) and tetraethylene glycol (TeEG) have been performed using a vibrating wire instrument operated in the forced oscillation mode. The measurements have been carried out in a range of pressures up to 70 MPa and temperatures from (293–363) K, covering a total range of viscosities from (3.46–1.15 × 102) mPa⋅s. Complementary experimental density data were obtained for the same glycols using an Anton Paar vibrating U-tube densimeter. These measurements have been performed in a range of temperatures from about (283–363) K and at pressures up to about 70 MPa. The viscosity results were correlated with density, using a modified hard-spheres scheme. The experimental density data were correlated, as a function of temperature and pressure, with a modified Tait-type equation. The expanded uncertainty of the present viscosity results at a 95% confidence level is estimated to be less than ±2.0% for viscosities up to 68 mPa s and less than ±2.6% for higher viscosities. The densities have an expanded uncertainty of ±0.2% at a 95% confidence level.
  • Studying the PEG family
    Publication . Sequeira, Maria Carolina; Avelino, Helena Maria da Nóbrega Teixeira; Caetano, Fernando J. P.; Fareleira, João M. N. A.
    The main goal of this line of research is the realisation of experimental measurements of thermophysical properties of a homologous series of ethylene and polyethylene glycols [H(OCH2CH2)nOH], and the development of correlation methods, with an accuracy adequate for the applications. Ethylene glycols and poly (ethylene) glycols (PEG) are widely used in many industrial applications as green solvents and as components of important sustainable processes as they are considered environmentally acceptable compounds [1,2]. Liquid Poly(ethyleneglycols) [PEGs] are in general considered as green solvents. They are non-volatile; their toxicity is very low, such that they are being used as food additives [3]. PEGs have been found to be biodegradable by bacteria in soil or sewage, but the ability of bacteria to biodegrade PEG decreases with increasing molecular weight [3]. The study of this series of compounds is important in many respects, not only because it is aimed at the study of PEGs which have innumerable practical applications but also because this study can be useful to monitor the degree of polymerization in the production of PEGs, themselves. In the present work, the viscosity of three ethylene glycols, namely diethylene, triethylene and tetraethylene glycols [4] and PEG 400 were measured with high accuracy using the vibrating wire technique at moderately high pressures. Complementary experimental density, surface tension and rheological behavior were obtained for the same liquids. One of the aims of the work is to analyse the relation of the present results with those obtained before for CO2 saturated PEG400 mixtures