Mestrado em Estatística, Matemática e Computação | Master's Degree in Statistics, Mathematics and Computation - TMEMC
Permanent URI for this collection
Browse
Browsing Mestrado em Estatística, Matemática e Computação | Master's Degree in Statistics, Mathematics and Computation - TMEMC by Subject "Algoritmos genéticos"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Fundamentos e aplicações da metodologia de superfície de respostaPublication . Leal, Maria da Conceição Dias; Oliveira, Teresa; Oliveira, AmílcarA otimização de processos e produtos, a caracterização do sistema e a quantificação do impacto da incerteza dos parâmetros de entrada na resposta do sistema, assumem importância cada vez maior na investigação nas mais diversas áreas da sociedade, seja pelo impacto económico seja pelas consequências que possam advir. A Metodologia de Superfície de Resposta (MSR), nas suas mais diversas abordagens, tem-se revelado uma ferramenta da maior importância nestas áreas. Desde a publicação do artigo de Box e Wilson (1951) que a metodologia foi sendo objeto do interesse de investigadores no âmbito dos fundamentos e das aplicações. Esta metodologia, na abordagem tradicional, tem um carater sequencial e em cada iteração contemplam-se três etapas: definição do planeamento experimental, ajuste do modelo e otimização. Nestas seis décadas, os planeamentos experimentais foram sendo desenvolvidos para responder às aplicações e aos objetivos, com vista a proporcionar um modelo o mais preciso possível. Os modelos utilizados para aproximar a resposta foram evoluindo dos modelos polinomiais de primeira e segunda ordem para os modelos de aprendizagem automática, passando por diferentes modelos não lineares. Os métodos de otimização passaram pelo mesmo processo de expansão da metodologia, com vista a responder a desafios cada vez mais exigentes. A este caminho não são alheios o desenvolvimento computacional e a simulação. Se no início a metodologia se aplicava apenas a sistemas reais, hoje, a simulação de sistemas, nas mais diversas áreas e com crescente grau de complexidade, socorre-se dos metamodelos para reduzir os custos computacionais associados. A quantificação probabilística da incerteza é um excelente exemplo da aplicação da MSR. A quantificação do impacto da incerteza nas variáveis de entrada na resposta do sistema pode ser obtida implementando a metodologia com uma abordagem estocástica. Esta forma de implementação da metodologia também permite implementar a análise de sensibilidade. Neste trabalho faz-se um levantamento dos desenvolvimentos da MSR, nas várias fases da implementação da metodologia, nas seis décadas que decorreram desde a sua introdução. Apresentam-se três aplicações: na indústria da cerâmica, na produção florestal e na área da saúde, mais especificamente no prognóstico do cancro da mama.