Ciências e Tecnologia | Comunicações em congressos, conferências, seminários/Communications in congresses, conferences, seminars
Permanent URI for this collection
Browse
Browsing Ciências e Tecnologia | Comunicações em congressos, conferências, seminários/Communications in congresses, conferences, seminars by Sustainable Development Goals (SDG) "09:Indústria, Inovação e Infraestruturas"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Low temperature thermal energy storage: insights into odd-even n-alkane systemPublication . Sequeira, Maria Carolina; Nogueira, Bernardo; Nikitin, Timur; Caetano, Fernando J. P.; Diogo, Herminio; Fausto, Rui; Fareleira, João M. N. A.
- Revisão de fraudes bancárias por SMS ou voz, a partir da análise de dados de telefones celulares: uma revisão sistemática de literaturaPublication . Cossa, Osvaldo Fernando; Sousa, Nuno; Gonçalves, Ramiro Manuel Ramos Moreira; Martins, José; Branco, Frederico; Martins, JoséNos últimos anos registou-se um crescimento acentuado de fraudes bancárias cometidas por SMS (Short Messaging System) e voz. Um dos fatores que contribui para o aumento de casos de fraudes por SMS é o baixo custo de aquisição de grandes volumes de mensagens, a confiabilidade (a mensagem chegará ao destinatário) e o fato de não precisar de Internet para chegar até a vítima. Em relação as fraudes financeiras por voz, estas podem ser usadas para persuadir as vítimas a efetuarem transferências bancárias para as contas dos fraudulentos, com a promessa de receber avultadas somas em prémios. A deteção destes tipos de fraudes não é uma tarefa trivial, pois exige a aplicação de técnicas e métodos apropriados dependendo da sua natureza. Assim, neste artigo é apresentada uma Revisão Sistemática de Literatura (RSL) de 2015 a 2020, com o intuito de analisar o estado da arte sobre fraudes bancárias cometidas por SMS ou voz. A RSL permitiu identificar os tipos mais comuns de fraudes bancárias por SMS ou voz, e as respetivas técnicas de deteção.
- Revisiting odd-even effects in n-alkane systemsPublication . Fausto, Rui; Sequeira, Maria Carolina; Caetano, Fernando J. P.; Diogo, Herminio; Fareleira, João M. N. A.; Nikitin, Timur; Fausto, Ruin-Alkanes have been widely studied for different applications. Recently, they became still more popular due to their exceptional characteristics as phase change materials (PCMs) for thermal energy storage (TES) applications [1]. In our research group, during the last three years, we have been studying the phase equilibrium behaviour of some binary systems with potential application as PCMs, including n-alkanes [2,3]. In this study, the n-alkanes family has shown some intriguing effects, related to the odd or even number of carbon atoms of the molecules on the characteristics of their solid-liquid phase equilibria. Several studies regarding the solid phase properties have been carried out to understand this type of phenomena in n-alkanes and compounds whose molecules contain alkyl groups. It has been established that n-alkanes exhibit different crystal packing arrangements according to their odd or even number of carbon atoms in their chains [4]. As a result, several properties are seen to be affected by the number of carbon atoms, revealing remarkable odd-even effects, which can eventually be used as an advantage for some specific applications [5]. This is particularly important to interpret and predict the solid-liquid phase equilibrium types of the diagrams, which is a key issue to select PCMs for TES applications. Most of the studies involving the properties of n-alkanes are devoted to the liquid phase. Therefore, along the years, a wide range of properties have been measured, predicted, correlated, and interpreted, including viscosity, density, heat capacity, vapour pressure, flash point, boiling point, and thermal conductivity. It is generally known that linear alkanes are an interesting homologous series, because they show a considerable regularity in their fluid phase properties, which allows to establish, for example, simple correlations based on the number of carbon atoms in the molecular chain [4]. Because of the raising importance of energy storage, namely TES, and the application of alkanes as PCMs, interest in their solid-liquid phase equilibria has increased. Consequently, it is interesting to picture an overall image on the thermophysical properties of n-alkanes, and, in particular to study the predictability of the main characteristics of their solid-liquid phase equilibria. Thus, this work aims to be a comprehensive view on the thermophysical properties and phase equilibrium behaviour of n-alkanes and their relation to the odd or even carbon atoms present in the alkyl chain.
- Seeking new low temperature energy storage systems: n-alkanes as phase change materialsPublication . Sequeira, Maria Carolina; Nogueira, Bernardo A.; Nikitin, Timur; Caetano, Fernando J. P.; Fareleira, João M. N. A.; Fausto , Rui; Diogo, HerminioOver the last decades, the increasing need for energy has been a tremendous challenge. Until now, fossil fuels have been the dominant energy source, however, due to their environmental consequences, renewable energies are the promising solution for the future.1 Nevertheless, the intermittent nature of most renewable energy sources often leads to a discrepancy between the energy produced and its consumption, which highlights the crucial role of energy storage technologies in enhancing clean energy utilization.2 From all energy storage solutions, thermal energy storage (TES) is one of the most promising options, showing substantial energy storage capacity at an acceptable cost.3 For these applications, phase change materials (PCMs) are particularly important, especially for low temperature energy storage systems. Linear alkanes (n-alkanes) have been studied as good candidates for TES applications mainly due to their singular phase transition performance, among others.4 In the present work, it has also been studied the differences due to the odd-even carbon chain number on the solid-liquid equilibrium properties that these materials can present, which is a key aspect crucial to characterize the systems for an upcoming use as PCMs. 4,5 to be used as new PCMs For TES applications, solid-liquid phase equilibrium is determinant to characterize the phase transitions which are more important for the application of these systems, as new PCMs. As an example, in the logistics associated to the transport of perishable consumables, like vaccines and other pharmaceutical products, TES plays an important role. In the present context, this work aims at the characterization of some selected n-alkane binary systems that can be used for energy storage applications at low temperatures, including the construction of the solid-liquid binary phase diagrams at sub-zero temperatures using differential scanning calorimetry (DSC), hot stage microscopy (HSM) and Raman spectroscopy. The studied systems composed by odd and even n-alkanes, have showed different solid-liquid equilibrium behaviour. The HSM and Raman spectroscopy were fundamental to obtain the binary phase diagrams, but also to visualize the changes taking place in real time as a function of temperature and often the identification of the different solid and liquid phases exhibited by these systems. This work presents some preliminary phase equilibrium data, which, to the knowledge of the authors, are not available in the literature, and are presently being prepared for publication in an international scientific journal. The presentation will also include comparisons with spread literature data, when available. All these studied systems have promising characteristics for low temperature energy storage. With this work, it is also demonstrated how solid-liquid phase equilibrium studies are a central key to select the most adequate phase change material for a specific TES application.