Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.78 MB | Adobe PDF |
Advisor(s)
Abstract(s)
n-Alkanes have been widely studied for different applications. Recently, they became still more popular due to their exceptional characteristics as phase change materials (PCMs) for thermal energy storage (TES) applications [1]. In our research group, during the last three years, we have been studying the phase equilibrium behaviour of some binary systems with potential application as PCMs, including n-alkanes [2,3]. In this study, the n-alkanes family has shown some intriguing effects, related to the odd or even number of carbon atoms of the molecules on the characteristics of their solid-liquid phase equilibria. Several studies regarding the solid phase properties have been carried out to understand this type of phenomena in n-alkanes and compounds whose molecules contain alkyl groups. It has been established that n-alkanes exhibit different crystal packing arrangements according to their odd or even number of carbon atoms in their chains [4]. As a result, several properties are seen to be affected by the number of carbon atoms, revealing remarkable odd-even effects, which can eventually be used as an advantage for some specific applications [5]. This is particularly important to interpret and predict the solid-liquid phase equilibrium types of the diagrams, which is a key issue to select PCMs for TES applications.
Most of the studies involving the properties of n-alkanes are devoted to the liquid phase. Therefore, along the years, a wide range of properties have been measured, predicted, correlated, and interpreted, including viscosity, density, heat capacity, vapour pressure, flash point, boiling point, and thermal conductivity. It is generally known that linear alkanes are an interesting homologous series, because they show a considerable regularity in their fluid phase properties, which allows to establish, for example, simple correlations based on the number of carbon atoms in the molecular chain [4].
Because of the raising importance of energy storage, namely TES, and the application of alkanes as PCMs, interest in their solid-liquid phase equilibria has increased. Consequently, it is interesting to picture an overall image on the thermophysical properties of n-alkanes, and, in particular to study the predictability of the main characteristics of their solid-liquid phase equilibria. Thus, this work aims to be a comprehensive view on the thermophysical properties and phase equilibrium behaviour of n-alkanes and their relation to the odd or even carbon atoms present in the alkyl chain.
Description
Keywords
n-Alkanes Odd-even effects Phase change materials PCM Thermal energy storage