Repository logo
 
Publication

Lifts for semigroups of endomorphisms of an independence algebra

dc.contributor.authorAraújo, João
dc.date.accessioned2011-12-23T09:27:27Z
dc.date.available2011-12-23T09:27:27Z
dc.date.issued2006
dc.description.abstractFor a universal algebra A , let End(A) and Aut(A) denote, respectively, the endomorphism monoid and the automorphism group of A . Let S be a semigroup and let T be a characteristic subsemigroup of S . We say that ϕ∈Aut(S) is a lift for ψ∈Aut(T) if ϕ|T=ψ . For ψ∈Aut(T) we denote by L(ψ) the set of lifts of ψ , that is, L(ψ)={ϕ∈Aut(S)∣ϕ| T =ψ}. Let A be an independence algebra of infinite rank and let S be a monoid of monomorphisms such that G=Aut(A)≤S≤End(A) . It is obvious that G is characteristic in S . Fitzpatrick and Symons proved that if A is a set (that is, an algebra without operations), then |L(ϕ)|=1 . The author proved in a previous paper that the analogue of this result does not hold for all monoids of monomorphisms of an independence algebra. The aim of this paper is to prove that the analogue of the result above holds for semigroups S=⟨Aut(A)∪E∪R⟩≤End(A) , where E is any set of idempotents and R is the empty set or a set containing a special monomorphism α and a special epimorphism α ∗ .por
dc.description.sponsorshipI would like to thank my supervisor, Professor John Fountain, and Professors Victoria Gould and Peter M. Higgins, for their comments on a previous draft of this paper. Also I thank the support of POCTI–ISFL–1–143 of Centro de Algebra da Universidade de Lisboa, financed by FCT and FEDER.
dc.identifier.citationAraújo, João - Lifts for semigroups of endomorphisms of an independence algebra. "Colloquium Mathematicum" [Em linha]. ISSN 0010-1354 (Print) 1730-6302 (Online). Vol. 106, nº 6 (2011), p. 39-56por
dc.identifier.issn0010-1354
dc.identifier.urihttp://hdl.handle.net/10400.2/2008
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherInstytut Matematyczny, Polskiej Akademii Naukpor
dc.relation.publisherversionhttp://journals.impan.pl/cgi-bin/doi?cm106-1-4por
dc.subjectSemigroupspor
dc.subjectEndomorphismspor
dc.subjectIndependence algebraspor
dc.titleLifts for semigroups of endomorphisms of an independence algebrapor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceWarszawiepor
oaire.citation.endPage56por
oaire.citation.startPage39por
oaire.citation.titleColloquium Mathematicumpor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.givenNameJoão Jorge
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.orcid0000-0001-6655-2172
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
14.pdf
Size:
283.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: