Logo do repositório
 
Publicação

Clustering of wind speed time series as a tool for wind farm diagnosis

datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorMartins, Ana
dc.contributor.authorVaz, Daniel
dc.contributor.authorSilva, Tiago
dc.contributor.authorCardoso, Margarida
dc.contributor.authorCarvalho, Alda
dc.date.accessioned2026-02-02T14:30:06Z
dc.date.available2026-02-02T14:30:06Z
dc.date.issued2024
dc.description.abstractIn several industrial fields, environmental and operational data are acquired with numerous purposes, potentially generating a huge quantity of data containing valuable information for management actions. This work proposes a methodology for clustering time series based on the K-medoids algorithm using a convex combination of different time series correlation metrics, the COMB distance. The multidimensional scaling procedure is used to enhance the visualization of the clustering results, and a matrix plot display is proposed as an efficient visualization tool to interpret the COMB distance components. This is a general-purpose methodology that is intended to ease time series interpretation; however, due to the relevance of the field, this study explores the clustering of time series judiciously collected from data of a wind farm located on a complex terrain. Using the COMB distance for wind speed time bands, clustering exposes operational similarities and dissimilarities among neighboring turbines which are influenced by the turbines’ relative positions and terrain features and regarding the direction of oncoming wind. In a significant number of cases, clustering does not coincide with the natural geographic grouping of the turbines. A novel representation of the contributing distances—the COMB distance matrix plot—provides a quick way to compare pairs of time bands (turbines) regarding various features.eng
dc.description.sponsorshipThis research was funded by the Portuguese Foundation for Science and Technology (FCT, IP) under the projects “Fluid–structure interaction for functional assessment of ascending aortic aneurysms: a biomechanical-based approach towards clinical practice” (AneurysmTool) DOI: 10.54499/PTDC/EMD-EMD/1230/2021; UID/00667: Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e Industrial (UNIDEMI); R. Valente Ph.D. grant 2022.12223.BD. A. Carvalho was partially supported by national funds through FCT- Fundação para a Ciência e a Tecnologia, I.P., in the framework of the unit ISEG Research; UID/06522/2025. A. C. Tomás was supported by Projetos de Investigação Clínica CUF Academic Center 2024.
dc.identifier.citationMartins, A. A., Vaz, D. C., Silva, T. A. N., Cardoso, M., & Carvalho, A. (2024). Clustering of Wind Speed Time Series as a Tool for Wind Farm Diagnosis. Mathematical and Computational Applications, 29(3), 35. https://doi.org/10.3390/mca29030035
dc.identifier.doi10.3390/mca29030035
dc.identifier.urihttp://hdl.handle.net/10400.2/21119
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationFluid-structure interaction for functional assessment of ascending aortic aneurysms: a biomechanical-based approach toward clinical practice
dc.relationISEG Research in Economics and Management
dc.relation.hasversionhttps://www.mdpi.com/2297-8747/29/3/35
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectTime series
dc.subjectWind data
dc.subjectClustering
dc.subjectK-medoids
dc.subjectCOMB distance
dc.subjectVisual interpretation tools
dc.subjectWind farm diagnosis
dc.titleClustering of wind speed time series as a tool for wind farm diagnosiseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleFluid-structure interaction for functional assessment of ascending aortic aneurysms: a biomechanical-based approach toward clinical practice
oaire.awardTitleISEG Research in Economics and Management
oaire.awardURIhttp://hdl.handle.net/10400.2/21116
oaire.awardURIhttp://hdl.handle.net/10400.2/21117
oaire.citation.issue3
oaire.citation.titleMathematical and Computational Applications
oaire.citation.volume29
oaire.fundingStreamConcurso de Projetos IC&DT em Todos os Domínios Científicos
oaire.fundingStreamAvaliação UID 2023/2024 PRR
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCarvalho
person.givenNameAlda
person.identifierAAA-4372-2021
person.identifier.ciencia-idFD18-CBDD-B7C7
person.identifier.orcid0000-0003-2642-4947
person.identifier.scopus-author-id25027091800
relation.isAuthorOfPublicationcb806308-9989-403b-97b7-42d77143f6d5
relation.isAuthorOfPublication.latestForDiscoverycb806308-9989-403b-97b7-42d77143f6d5
relation.isProjectOfPublication362e6f1d-9046-4b5b-9338-64c7854b912b
relation.isProjectOfPublication1c27ad4c-fec3-4ae9-a67b-29c84c96e835
relation.isProjectOfPublication.latestForDiscovery362e6f1d-9046-4b5b-9338-64c7854b912b

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
mca-29-00035.pdf
Tamanho:
3.36 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.97 KB
Formato:
Item-specific license agreed upon to submission
Descrição: