Logo do repositório
 
A carregar...
Miniatura
Publicação

On the Lyapunov spectrum of infinite dimensional random products of compact operators

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
S&D.pdf294.89 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

We consider an infinite dimensional separable Hilbert space and its family of compact integrable cocycles over a dynamical system f. Assuming that f acts in a compact Hausdorff space X and preserves a Borel regular ergodic probability which is positive on non-empty open sets, we conclude that there is a C0-residual subset of cocycles within which, for almost every x, either the Oseledets–Ruelle’s decomposition along the orbit of x is dominated or all the Lyapunov exponents are equal to −∞.

Descrição

Palavras-chave

Random operators Dominated splitting Multiplicative ergodic theorem Lyapunov exponents

Contexto Educativo

Citação

M. Bessa, M. Carvalho, On the Lyapunov spectrum of infinite dimensional random products of compact operators, Stochastics and Dynamics, 8, 4, 593-611, 2011

Unidades organizacionais

Fascículo