Repository logo
 
Publication

Reducing the ill conditioning in the method of fundamental solutions

dc.contributor.authorAntunes, Pedro R. S.
dc.date.accessioned2018-02-22T14:55:02Z
dc.date.available2019-02-01T01:30:18Z
dc.date.issued2018
dc.description.abstractThe method of fundamental solutions (MFS) is a meshless method for solving boundary value problems with some partial differential equations. It allows to obtain highly accurate approximations for the solutions assuming that they are smooth enough, even with small matrices. As a counterpart, the (dense) matrices involved are often ill-conditioned which is related to the well known uncertainty principle stating that it is impossible to have high accuracy and good conditioning at the same time. In this work, we propose a technique to reduce the ill conditioning in the MFS, assuming that the source points are placed on a circumference of radius R. The idea is to apply a suitable change of basis that provides new basis functions that span the same space as the MFS’s, but are much better conditioned. In the particular case of circular domains, the algorithm allows to obtain errors close to machine precision, with condition numbers of order O(1), independently of the number of points sources and R.pt_PT
dc.description.sponsorshipThe research was partially supported by FCT, Portugal, through the program “Investigador FCT” with reference IF/00177/2013 and the scientific project PTDC/MAT-CAL/4334/2014.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/s10444-017-9548-6pt_PT
dc.identifier.issn1019-7168 (Print)
dc.identifier.issn1572-9044 (Online)
dc.identifier.urihttp://hdl.handle.net/10400.2/7172
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Verlagpt_PT
dc.subjectLaplace equationpt_PT
dc.subjectMethod of fundamental solutionspt_PT
dc.subjectIll Conditioningpt_PT
dc.titleReducing the ill conditioning in the method of fundamental solutionspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FMAT-CAL%2F4334%2F2014/PT
oaire.citation.endPage365pt_PT
oaire.citation.startPage351pt_PT
oaire.citation.titleAdvances in Computational Mathematicspt_PT
oaire.citation.volumeVol. 44, Nº1pt_PT
oaire.fundingStream3599-PPCDT
person.familyNameAntunes
person.givenNamePedro
person.identifier.ciencia-id6710-138C-A69D
person.identifier.orcid0000-0003-1969-1860
person.identifier.ridM-2406-2015
person.identifier.scopus-author-id55346859100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbef314d2-4a78-4fba-aecd-9f4e8e19e70c
relation.isAuthorOfPublication.latestForDiscoverybef314d2-4a78-4fba-aecd-9f4e8e19e70c
relation.isProjectOfPublication259186c3-0d02-4228-a8e8-aacad9f74b0e
relation.isProjectOfPublication.latestForDiscovery259186c3-0d02-4228-a8e8-aacad9f74b0e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A28.pdf
Size:
3.38 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.13 KB
Format:
Item-specific license agreed upon to submission
Description: