Repository logo
 
Loading...
Thumbnail Image
Publication

Hyperbolicity and stability for Hamiltonian flows

Use this identifier to reference this record.
Name:Description:Size:Format: 
JDE5.pdf233.44 KBAdobe PDF Download

Advisor(s)

Abstract(s)

We prove that a Hamiltonian star system, defined on a 2d-dimen- sional symplectic manifold M (d 􏱃 2), is Anosov. As a consequence we obtain the proof of the stability conjecture for Hamiltonians. This generalizes the 4-dimensional results in Bessa et al. (2010) [5].

Description

Keywords

Hamiltonian flow Hyperbolic orbit Dominated splitting

Pedagogical Context

Citation

M. Bessa, J. Rocha, M. J. Torres, Hyperbolicity and stability for Hamiltonian flows, 254, 1, 309-322, 2013

Organizational Units

Journal Issue