Logo do repositório
 
A carregar...
Miniatura
Publicação

A herbrandized functional interpretation of classical first-order logic

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
SH interpretation.pdf300.53 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

We introduce a new typed combinatory calculus with a type constructor that, to each type σ, associates the star type σ^∗ of the nonempty finite subsets of elements of type σ. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory calculus, we define a functional interpretation of first-order predicate logic and prove a corresponding soundness theorem. It is seen that each theorem of classical first-order logic is connected with certain formulas which are tautological in character. As a corollary, we reprove Herbrand’s theorem on the extraction of terms from classically provable existential statements.

Descrição

Palavras-chave

Mathematical logic Functional interpretations First-order logic Star combinatory calculus Finite sets Tautologies Herbrand’s theorem

Contexto Educativo

Citação

Ferreira, Fernando; Ferreira, Gilda - A herbrandized functional interpretation of classical first-order logic. "Archive for Mathematical Logic" [Em linha]. ISSN 0933-5846 (Print) 1432-0665 (Online). Vol. 56, nº 5-6 (2017), p. 523-539

Projetos de investigação

Projeto de investigaçãoVer mais
Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo