Name: | Description: | Size: | Format: | |
---|---|---|---|---|
167.49 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
In this paper we generalize recent results of Kreer and Penrose by showing that solutions to the discrete Smoluchowski equations $$\dot{c}_{j} =
\sum_{k=1}^{j-1}c_{j-k}c_{k} -
2c_{j}\sum_{k=1}^{\infty}c_{k}, j = 1, 2, \ldots$$
with general exponentially decreasing initial data, with
density $\rho,$ have the following asymptotic behaviour
$$\lim_{j, t \rightarrow\infty, \xi = j/t fixed, j \in
{\cal J}} t^{2}c_{j}(t) = \frac{q}{\rho}\,
e^{-\xi/\rho},$$
where ${\cal J} = \{j: c_{j}(t)>0, t>0\}$ and $q =\gcd
\{j: c_{j}(0)>0\}.$
Description
Keywords
Smoluchowski coagulation equations Self-similar solutions
Citation
Costa, Fernando Pestana da - On the dynamic scaling behaviour of solutions to the discrete Smoluchowski equations. "Proceedings of the Edinburgh Mathematical Society" [Em linha]. ISSN 0013-0915 (Print)1464-3839 (Online). Nº 39 (1996), p. 547-559
Publisher
Cambridge University Press