Repository logo
 
Publication

Dominated splitting and zero volume for incompressible three flows

dc.contributor.authorAraujo, Vitor
dc.contributor.authorBessa, Mário
dc.date.accessioned2023-05-24T13:42:13Z
dc.date.available2023-05-24T13:42:13Z
dc.date.issued2008
dc.description.abstractWe prove that there exists an open and dense subset of the incompressible 3-flows of class C2 such that, if a flow in this set has a positive volume regular invariant subset with dominated splitting for the linear Poincaré flow, then it must be an Anosov flow. With this result we are able to extend the dichotomies of Bochi–Mañé (see Bessa 2007 Ergod. Theory Dyn. Syst. 27 1445–72, Bochi 2002 Ergod. Theory Dyn. Syst. 22 1667–96, Mañé1996 Int. Conf. on Dynamical Systems (Montevideo, Uruguay, 1995) (Harlow: Longman) pp 110–9) and of Newhouse (see Newhouse 1977 Am. J. Math. 99 1061–87, Bessa and Duarte 2007 Dyn. Syst. Int. J. submitted Preprint 0709.0700) for flows with singularities. That is, we obtain for a residual subset of the C1 incompressible flows on 3-manifolds that: (i) either all Lyapunov exponents are zero or the flow is Anosov and (ii) either the flow is Anosov or else the elliptic periodic points are dense in the manifold.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationVitor Araujo and Mário Bessa, Dominated splitting and zero volume for incompressible three flows, 2008 Nonlinearity 21 1637pt_PT
dc.identifier.doi10.1088/0951-7715/21/7/014pt_PT
dc.identifier.issn0951-7715
dc.identifier.urihttp://hdl.handle.net/10400.2/13827
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIOP PUBLISHINGpt_PT
dc.relationChaotic dynamics
dc.relationABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
dc.titleDominated splitting and zero volume for incompressible three flowspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleChaotic dynamics
oaire.awardTitleABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POCI/POCI%2FMAT%2F61237%2F2004/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBPD%2F20890%2F2004/PT
oaire.citation.endPage1653pt_PT
oaire.citation.issue7pt_PT
oaire.citation.startPage1637pt_PT
oaire.citation.titleNonlinearitypt_PT
oaire.citation.volume21pt_PT
oaire.fundingStreamPOCI
oaire.fundingStreamFARH
person.familyNameBessa
person.givenNameMário
person.identifierhttps://scholar.google.com/citations?user=088yCR4AAAAJ&hl=pt-PT
person.identifier.ciencia-idC21A-EEC0-A3EF
person.identifier.orcid0000-0002-1758-2225
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2dd300f3-9f00-49de-9333-78ec0511220e
relation.isAuthorOfPublication.latestForDiscovery2dd300f3-9f00-49de-9333-78ec0511220e
relation.isProjectOfPublicationf8110ea1-6d8b-4388-a47f-19231bd4a023
relation.isProjectOfPublication70c66b47-c078-45c2-aeb0-54e54cd1a24e
relation.isProjectOfPublication.latestForDiscoveryf8110ea1-6d8b-4388-a47f-19231bd4a023

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Nonlinearity2.pdf
Size:
211.64 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: