Repository logo
 
Publication

Hamiltonian elliptic dynamics on symplectic $4$-manifolds

dc.contributor.authorBessa, Mário
dc.contributor.authorLopes Dias, João
dc.date.accessioned2023-05-31T12:15:41Z
dc.date.available2023-05-31T12:15:41Z
dc.date.issued2009
dc.description.abstractWe consider C2-Hamiltonian functions on compact 4-dimensional symplectic manifolds to study the elliptic dynamics of the Hamiltonian flow, namely the so-called Newhouse dichotomy. We show that for any open set U intersecting a far from Anosov regular energy surface, there is a nearby Hamiltonian having an elliptic closed orbit through U. Moreover, this implies that, for far from Anosov regular energy surfaces of a C2-generic Hamiltonian, the elliptic closed orbits are generic.pt_PT
dc.description.sponsorshipWe would like to thank Pedro Duarte for his useful suggestions. The first author was supported by Fundação para a Ciência e a Tecnologia, SFRH/BPD/20890/2004. The second author was partially supported by Fundação para a Ciência e a Tecnologia through the Program FEDER/POCI 2010.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationM. Bessa, J. L. Dias, Hamiltonian elliptic dynamics on symplectic $4$-manifolds, Proceedings of the American Mathematical Society, 137, 2, 585-592, 2009pt_PT
dc.identifier.doi10.1090/S0002-9939-08-09578-6pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.2/13931
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAMS - American Mathematical Societypt_PT
dc.relationABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
dc.relation.publisherversionhttps://www.ams.org/journals/proc/2009-137-02/S0002-9939-08-09578-6/S0002-9939-08-09578-6.pdfpt_PT
dc.titleHamiltonian elliptic dynamics on symplectic $4$-manifoldspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBPD%2F20890%2F2004/PT
oaire.citation.endPage592pt_PT
oaire.citation.issue02pt_PT
oaire.citation.startPage585pt_PT
oaire.citation.titleProceedings of the American Mathematical Societypt_PT
oaire.citation.volume137pt_PT
oaire.fundingStreamFARH
person.familyNameBessa
person.familyNameLopes Dias
person.givenNameMário
person.givenNameJoão
person.identifierhttps://scholar.google.com/citations?user=088yCR4AAAAJ&hl=pt-PT
person.identifier.ciencia-idC21A-EEC0-A3EF
person.identifier.ciencia-idA01A-369C-B7B3
person.identifier.orcid0000-0002-1758-2225
person.identifier.orcid0000-0002-2089-7308
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2dd300f3-9f00-49de-9333-78ec0511220e
relation.isAuthorOfPublicationdc04005b-3ba4-4f41-989e-e25dbb5e8ea7
relation.isAuthorOfPublication.latestForDiscovery2dd300f3-9f00-49de-9333-78ec0511220e
relation.isProjectOfPublication70c66b47-c078-45c2-aeb0-54e54cd1a24e
relation.isProjectOfPublication.latestForDiscovery70c66b47-c078-45c2-aeb0-54e54cd1a24e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PAMS.pdf
Size:
171.66 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: