Repository logo
 
Publication

Big data sets in environmental studies

datacite.subject.sdg04:Educação de Qualidadept_PT
datacite.subject.sdg15:Proteger a Vida Terrestrept_PT
dc.contributor.authorOliveira, Amilcar
dc.date.accessioned2024-12-11T12:37:19Z
dc.date.available2024-12-11T12:37:19Z
dc.date.issued2023
dc.description.abstractBig Data datasets for environmental studies play a crucial role in understanding, monitoring and addressing large-scale environmental issues. Big Data datasets for environmental studies deal with huge volumes of data coming from various sources such as satellites, remote sensors, weather stations, sensor networks and mobile devices. These datasets include detailed information on climate change, biodiversity, air quality, water resources and other environmental parameters. Integrating and analyzing data from different sources allows for a more comprehensive understanding of environmental standards and helps in making informed decisions. The generation of environmental data occurs in real time, especially with the increased use of sensors and continuous monitoring technologies. The ability to handle the velocity of data is essential for detecting rapid changes in the environment and responding to critical events such as natural disasters. Predictive models help predict climate patterns, identify areas of environmental risk and assess the impacts of human activities on the ecosystem. This data is crucial for developing mitigation strategies, adapting to climate change and conserving biodiversity. In summary, Big Data datasets play a fundamental role in environmental studies, providing a comprehensive and real-time understanding of environmental challenges, enabling the implementation of effective strategies for conservation and sustainability.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.2/16938
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherUniversidade de Thessalypt_PT
dc.relationCentre of Statistics and its Applications
dc.relation.publisherversionhttp://envecon.econ.uth.gr/main/eng/images/9th_conference/ENVECON9Proceedings.pdfpt_PT
dc.relation.publisherversionhttps://doi.org/10.54499/UIDB/00006/2020
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectBig datapt_PT
dc.subjectEnvironmentpt_PT
dc.subjectData setspt_PT
dc.titleBig data sets in environmental studiespt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleCentre of Statistics and its Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00006%2F2020/PT
oaire.citation.conferencePlaceVolos - Gréciapt_PT
oaire.citation.endPage251pt_PT
oaire.citation.startPage251pt_PT
oaire.citation.title9th Conference in Economics of Natural Resources and the Environmentpt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameOliveira
person.givenNameAmilcar
person.identifier.ciencia-id7110-61B4-B87F
person.identifier.orcid0000-0001-5500-7742
person.identifier.scopus-author-id55675222550
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication1c873476-22fd-4331-8286-ff5576ac3b0c
relation.isAuthorOfPublication.latestForDiscovery1c873476-22fd-4331-8286-ff5576ac3b0c
relation.isProjectOfPublication200da949-b304-425e-8937-4221c1b2f32b
relation.isProjectOfPublication.latestForDiscovery200da949-b304-425e-8937-4221c1b2f32b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ENVECON9Proceedings_p251.pdf
Size:
164.19 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: