Publication
A feature selection algorithm based on heuristic decomposition
dc.contributor.author | Cavique, Luís | |
dc.contributor.author | Mendes, Armando B. | |
dc.contributor.author | Martiniano, Hugo F. M. C. | |
dc.date.accessioned | 2018-11-06T12:36:45Z | |
dc.date.available | 2018-11-06T12:36:45Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Feature selection is one of the most important concepts in data mining when dimensionality reduction is needed. The performance measures of feature selection encompass predictive accuracy and result comprehensibility. Consistency based feature selection is a significant category of feature selection research that substantially improves the comprehensibility of the result using the parsimony principle. In this work, the feature selection algorithm LAID, Logical Analysis of Inconsistent Data, is applied to large volumes of data. In order to deal with hundreds of thousands of attributes, a problem de-composition strategy associated with a set covering problem formulation is used. The algorithm is applied to artificial datasets with genome-like characteristics of patients with rare diseases. | pt_PT |
dc.description.sponsorship | The first author would like to thank the FCT support UID/Multi/04046/2013. This work used the EGI infrastructure with the support of NCG-INGRID-PT (Portugal) and BIFI (Spain). | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1007/978-3-319-65340-2_43 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.2/7645 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation.publisherversion | https://link.springer.com/chapter/10.1007/978-3-319-65340-2_43#citeas | pt_PT |
dc.subject | Data mining | pt_PT |
dc.subject | Feature selection | pt_PT |
dc.subject | Consistency measure | pt_PT |
dc.subject | Set covering problem | pt_PT |
dc.subject | Heuristic decomposition | pt_PT |
dc.title | A feature selection algorithm based on heuristic decomposition | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FMulti%2F04046%2F2013/PT | |
oaire.citation.endPage | 536 | pt_PT |
oaire.citation.startPage | 525 | pt_PT |
oaire.citation.title | Progress in Artificial Intelligence | pt_PT |
oaire.fundingStream | 5876 | |
person.familyName | Cavique | |
person.familyName | B Mendes | |
person.familyName | Martiniano | |
person.givenName | Luís | |
person.givenName | Armando | |
person.givenName | Hugo Filipe de Mesquita Costa | |
person.identifier | 1008054 | |
person.identifier.ciencia-id | 911E-84AC-3956 | |
person.identifier.ciencia-id | EE1E-90E7-2751 | |
person.identifier.ciencia-id | 1E13-00FA-3C8B | |
person.identifier.orcid | 0000-0002-5590-1493 | |
person.identifier.orcid | 0000-0003-3049-5852 | |
person.identifier.orcid | 0000-0003-2490-8913 | |
person.identifier.rid | N-7280-2015 | |
person.identifier.rid | R-7571-2017 | |
person.identifier.scopus-author-id | 13003839500 | |
person.identifier.scopus-author-id | 16743962700 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 40906a16-46a2-42f1-b26d-7db7012294ee | |
relation.isAuthorOfPublication | d26eb57f-648e-485c-bd92-efcc8cb1b3be | |
relation.isAuthorOfPublication | 64ea6a03-f22d-4a28-9391-46a785f6790f | |
relation.isAuthorOfPublication.latestForDiscovery | d26eb57f-648e-485c-bd92-efcc8cb1b3be | |
relation.isProjectOfPublication | ab8b249f-48e9-42c8-8786-c1976e895516 | |
relation.isProjectOfPublication.latestForDiscovery | ab8b249f-48e9-42c8-8786-c1976e895516 |