Repository logo
 
Publication

Feynman integrals for non-smooth and rapidly growing potentials

dc.contributor.authorFaria, Margarida de
dc.contributor.authorOliveira, Maria João
dc.contributor.authorStreit, Ludwig
dc.date.accessioned2010-11-23T17:07:30Z
dc.date.available2010-11-23T17:07:30Z
dc.date.issued2005
dc.description.abstractThe Feynman integral for the Schrödinger propagator is constructed as a generalized function of white noise, for a linear space of potentials spanned by finite signed measures of bounded support and Laplace transforms of such measures, i.e., locally singular as well as rapidly growing at infinity. Remarkably, all these propagators admit a perturbation expansion.por
dc.identifier.citationFaria, Margarida de; Oliveira Maria João; Streit, Ludwig - Feynman integrals for non-smooth and rapidly growing potentials. "Journal of Mathematical Physics" [Em linha]. ISSN 0022-2488. Vol. 46, nº 6 (May 2005), p. 1-14por
dc.identifier.issn0022-2488
dc.identifier.otherArt. No. 063505
dc.identifier.urihttp://hdl.handle.net/10400.2/1679
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherAmerican Institute of Physicspor
dc.relation.ispartofseries063505
dc.relation.publisherversionDOI: 10.1063/1.1904162
dc.subjectFeynman integralspor
dc.subjectWhite noise analysispor
dc.titleFeynman integrals for non-smooth and rapidly growing potentialspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleJournal of Mathematical Physicspor
person.familyNameOliveira
person.givenNameMaria João
person.identifier.ciencia-idDD1B-3964-2168
person.identifier.orcid0000-0002-4027-9849
person.identifier.scopus-author-id24473078000
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication73548978-4e91-4a20-bc3c-c62106297626
relation.isAuthorOfPublication.latestForDiscovery73548978-4e91-4a20-bc3c-c62106297626

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arxiv-JMP.pdf
Size:
255.6 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: