Repository logo
 
Publication

Pylung: a supporting tool for comparative study of ViT and CNN-based models used for lung nodules classification

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg03:Saúde de Qualidade
dc.contributor.authorMarques, Felipe
dc.contributor.authorPestana, Pedro
dc.contributor.authorFilipe, Vitor
dc.contributor.authorPestana, Pedro Duarte
dc.date.accessioned2026-01-08T15:12:37Z
dc.date.available2026-01-08T15:12:37Z
dc.date.issued2023
dc.description.abstractLung cancer is a significant global health concern, and accu- rate classification of lung nodules plays a crucial role in its early detec- tion and treatment. This paper evaluates and compares the performance of Vision Transformer (ViT) and Convolutional Neural Network (CNN) models for lung nodule classification using the Pylung tool proposed in this work. The study aims to address the lack of research on ViT in lung nodule classification and proposes ViT as an alternative to CNN. The Lung Image Database Consortium and Image Database Resource Ini- tiative (LIDC-IDRI) dataset is utilized for training and evaluation. The Pylung tool is employed for dataset preprocessing and comparison of models. Three models, ViT, VGG16, and ResNet50, are analyzed, and their hyperparameters are optimized using Optuna. The results show that ViT achieves the highest accuracy (99.06%) in nodule classifica- tion compared to VGG16 (98.71%) and ResNet50 (98.46%). The study contributes by introducing ViT as a model for lung nodule classification, presenting the Pylung tool for model comparison, and suggesting further investigations to improve the accuracy.eng
dc.identifier.citationMarques, F., Pestana, P. & Filipe, V. (2023). Pylung: a Supporting Tool for Comparative Study of ViT and CNN-based Models Used for Lung Nodules Classification. 23rd International Conference on Intelligent Systems Design and Applications (ISDA)
dc.identifier.doi10.1007/978-3-031-64836-6_13
dc.identifier.issn2367-3370
dc.identifier.urihttp://hdl.handle.net/10400.2/20709
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer
dc.rights.uriN/A
dc.subjectLung Cancer
dc.subjectViT
dc.subjectCNN
dc.subjectNodule Classification
dc.titlePylung: a supporting tool for comparative study of ViT and CNN-based models used for lung nodules classificationeng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2023
oaire.citation.endPage137
oaire.citation.startPage127
oaire.citation.titleProceedings of the 23rd International Conference on Intelligent Systems Design and Applications (ISDA)
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameUniversidade Aberta
person.familyNamePestana
person.givenNamePedro Duarte
person.identifier.ciencia-id2714-8A7B-5CCA
person.identifier.orcid0000-0002-3406-1077
person.identifier.ridE-7273-2016
person.identifier.scopus-author-id56074016300
relation.isAuthorOfPublication755592cd-7905-4c94-9eba-1bb83ce10355
relation.isAuthorOfPublication.latestForDiscovery755592cd-7905-4c94-9eba-1bb83ce10355

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Pylung_pub.pdf
Size:
2.87 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: