Repository logo
 
Publication

Tail-adaptive generation of random numbers from a gamma-order normal distribution using the Ziggurat algorithm with a multivariate extension

datacite.subject.fosCiências Naturais::Matemáticas
datacite.subject.sdg08:Trabalho Digno e Crescimento Económico
dc.contributor.authorKitsos, Christos P.
dc.contributor.authorOliveira, Amilcar
dc.contributor.authorUlrich, Eschcol Nyamsi
dc.contributor.editorLeiva, Victor
dc.contributor.editorCastro, Cecília
dc.date.accessioned2025-12-04T09:50:09Z
dc.date.available2025-12-04T09:50:09Z
dc.date.issued2025-06
dc.description.abstractThe Ziggurat algorithm is a well-established rejection-sampling method designed for the efficient generation of pseudo-random numbers from unimodal distributions, particularly the standard normal. In this work, we extend and adapt the Ziggurat algorithm to enable the tail-adaptive generation of random numbers from the gamma-order generalized normal distribution |a flexible family characterized by a tail-shaping parameter that governs transitions between light, Gaussian, and heavy-tailed regimes. The resulting algorithm retains the computational speed of the original Ziggurat algorithm while supporting both univariate and multivariate implementations. This extension is especially relevant in simulation-intensive contexts, such as Bayesian modeling, quantitative nance, and machine learning. We provide the mathematical foundation, reproducible implementation details, and extensive benchmarking results that validate the method's efficiency and accuracy. A multivariate extension based on radial decomposition is also introduced, demonstrating the feasibility of generating random variables from symmetric multivariate distributions in practice. To illustrate the practical utility of the proposed algorithm, we present a comprehensive Monte Carlo simulation study evaluating performance across various shape and scale con gurations. Additionally, we apply the method to real-world data from biomedical signal processing, highlighting its robustness and adaptability to empirical settings where tail behavior plays a crucial role.eng
dc.description.sponsorshipThis work is partially nanced to Amilcar Oliveira by national funds through FCT | Fundação para a Ciência e Tecnologia | under the project UIDB/00006/2020 (DOI: 10.54499/UIDB/00006/2020).
dc.identifier.doi10.32372/ChJS.16-01-05
dc.identifier.eissn0718-7920
dc.identifier.issn0718-7912
dc.identifier.urihttp://hdl.handle.net/10400.2/20499
dc.language.isoeng
dc.peerreviewedyes
dc.publisherChilean Statistical Society (Sociedad Chilena de Estadística)
dc.relationCentre of Statistics and its Applications
dc.relation.hasversionhttps://soche.cl/chjs/volumes/16/ChJS-16-01-05.pdf
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHeavy-tailed distribution s
dc.subjectMultivariate simulation
dc.subjectRejection algorithms
dc.subjectSymmetric distributions
dc.subjectZiggurat algorithm
dc.titleTail-adaptive generation of random numbers from a gamma-order normal distribution using the Ziggurat algorithm with a multivariate extensioneng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre of Statistics and its Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00006%2F2020/PT
oaire.citation.endPage97
oaire.citation.issue1
oaire.citation.startPage79
oaire.citation.titleChilean Journal of Statistics
oaire.citation.volume16
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameKitsos
person.familyNameOliveira
person.givenNameChristos P.
person.givenNameAmilcar
person.identifier.ciencia-id7110-61B4-B87F
person.identifier.orcid0000-0003-3084-0150
person.identifier.orcid0000-0001-5500-7742
person.identifier.scopus-author-id55675222550
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationc35aefb9-c71f-47a0-9826-0a9f82f89581
relation.isAuthorOfPublication1c873476-22fd-4331-8286-ff5576ac3b0c
relation.isAuthorOfPublication.latestForDiscoveryc35aefb9-c71f-47a0-9826-0a9f82f89581
relation.isProjectOfPublication200da949-b304-425e-8937-4221c1b2f32b
relation.isProjectOfPublication.latestForDiscovery200da949-b304-425e-8937-4221c1b2f32b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChJS-16-01-05.pdf
Size:
818.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: