Logo do repositório
 
Publicação

Some notes on disjunctive short sum: polychromatic nim

datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorCarvalho, Alda
dc.contributor.authorSantos, Carlos Pereira dos
dc.date.accessioned2026-01-29T11:35:02Z
dc.date.available2026-01-29T11:35:02Z
dc.date.issued2023
dc.description.abstractpolychromatic nim is a version of the classic game nim, played with colored stones, in which each pile has stones of a single color, and the player who successfully extinguishes a color wins the game. This game is closely related to the concept of short rule, the ending condition that states that a disjunctive sum ends as soon as any one of the components ends. Here, we discuss that rule, namely when applied to impartial games, and prove that the Grundy-values of polychromatic nim present an arithmetic-periodic behavior.eng
dc.description.sponsorshipAlda Carvalho is a CEMAPRE member and has the support of Project CEMAPRE/REM - UIDB/05069/2020 financed by FCT/MCTES, Portugal through national funds. Carlos Santos work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P. , Portugal, under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).
dc.identifier.doi10.1016/j.dam.2022.09.018
dc.identifier.issn0166-218X
dc.identifier.urihttp://hdl.handle.net/10400.2/21086
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationResearch in Economics and Mathematics
dc.relationCenter for Mathematics and Applications
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S0166218X22003663?via%3Dihub
dc.rights.uriN/A
dc.subjectCombinatorial game theory
dc.subjectDisjunctive short sum
dc.subjectImpartial games
dc.subjectSprague–Grundy theory
dc.subjectArithmetic periodicity
dc.subjectPolychromatic nim
dc.titleSome notes on disjunctive short sum: polychromatic nimeng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch in Economics and Mathematics
oaire.awardTitleCenter for Mathematics and Applications
oaire.awardURIhttp://hdl.handle.net/10400.2/21084
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00297%2F2020/PT
oaire.citation.endPage125
oaire.citation.startPage113
oaire.citation.titleDiscrete Applied Mathematics
oaire.citation.volume324
oaire.fundingStreamConcurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017/2018) - Financiamento Base
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCarvalho
person.givenNameAlda
person.identifierAAA-4372-2021
person.identifier.ciencia-idFD18-CBDD-B7C7
person.identifier.orcid0000-0003-2642-4947
person.identifier.scopus-author-id25027091800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationcb806308-9989-403b-97b7-42d77143f6d5
relation.isAuthorOfPublication.latestForDiscoverycb806308-9989-403b-97b7-42d77143f6d5
relation.isProjectOfPublicationc9c6b668-b574-461f-878d-b8130e3bd5a0
relation.isProjectOfPublicationcd254f72-96c1-4c38-9af6-3997cafdeea9
relation.isProjectOfPublication.latestForDiscoveryc9c6b668-b574-461f-878d-b8130e3bd5a0

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
1-s2.0-S0166218X22003663-main.pdf
Tamanho:
604.92 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.97 KB
Formato:
Item-specific license agreed upon to submission
Descrição: