Repository logo
 
Publication

Population growth and geometrically-thinned extreme value theory

datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorBrilhante, Maria de Fátima
dc.contributor.authorGomes, Maria Ivette
dc.contributor.authorMendonça, Sandra
dc.contributor.authorPestana, Dinis
dc.contributor.authorPestana, Pedro Duarte
dc.contributor.editorHenriques-Rodrigues, L.
dc.contributor.editorMenezes, R.
dc.contributor.editorMachado, L.M.
dc.contributor.editorFaria, S.
dc.contributor.editorde Carvalho, M.
dc.date.accessioned2026-01-12T17:11:25Z
dc.date.available2026-01-12T17:11:25Z
dc.date.issued2025
dc.description.abstractStarting from the simple Beta(2,2) model, connected to the Verhulst logistic parabola, several extensions are discussed, and connections to extremal models are revealed. Aside from the classical general extreme value model, extreme value models in randomly stopped extremes schemes are also discussed. Logistic and Gompertz growth equations are the usual choice to model sustainable growth. Therefore, observing that the logistic distribution is (geo)max-stable and the Gompertz function is proportional to the Gumbel max-stable distribution, other growth models, related to classical and to geometrically thinned extreme value theory are investigated.eng
dc.identifier.doi10.1007/978-3-031-68949-9_2
dc.identifier.isbn978-3-031-68949-9
dc.identifier.urihttp://hdl.handle.net/10400.2/20769
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer
dc.rights.uriN/A
dc.subjectExtreme value theory
dc.subjectPopulation dynamics
dc.subjectGeneralised Verhulst differential equations
dc.subjectBetaBoop random variables
dc.titlePopulation growth and geometrically-thinned extreme value theoryeng
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage26
oaire.citation.startPage13
oaire.citation.titleNew Frontiers in Statistics and Data Science
oaire.citation.volume469
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameUniversidade Aberta
person.familyNameBrilhante
person.familyNamePestana
person.givenNameMaria de Fátima
person.givenNamePedro Duarte
person.identifier.ciencia-id2714-8A7B-5CCA
person.identifier.orcid0000-0001-9276-7011
person.identifier.orcid0000-0002-3406-1077
person.identifier.ridE-7273-2016
person.identifier.scopus-author-id56074016300
relation.isAuthorOfPublicationc7d7e495-4415-4e86-9ad6-c142069849c7
relation.isAuthorOfPublication755592cd-7905-4c94-9eba-1bb83ce10355
relation.isAuthorOfPublication.latestForDiscoveryc7d7e495-4415-4e86-9ad6-c142069849c7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Population-Growth-and-Geometrically-Thinned-Extreme-Value-Theory.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: