Logo do repositório
 
Publicação

Artificial intelligence in recruitment: a multivocal review of benefits, challenges, and strategies

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg04:Educação de Qualidade
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorTrovão, Hugo
dc.contributor.authorSão Mamede, Henrique
dc.contributor.authorTrigo, Paulo
dc.contributor.authorSantos, Vitor
dc.date.accessioned2026-01-06T15:34:52Z
dc.date.available2026-01-06T15:34:52Z
dc.date.issued2025-12-01
dc.description.abstractThis study investigates the role of artificial intelligence (AI) in recruitment, with a specific emphasis on small and medium enterprises (SMEs) and cultural diversity, two dimensions frequently underrepresented in existing research. The objective is to evaluate the benefits, challenges, and strategies for the responsible adoption of AI in recruitment. To achieve this, a Multivocal Literature Review (MLR) was conducted, systematically synthesising peer-reviewed studies and grey literature published from 2018 onwards. Following Kitchenham’s systematic review guidelines and Garousi’s multivocal extensions, academic and practitioner perspectives were analysed to capture both theoretical insights and real-world practices. The findings indicate that AI can streamline recruitment processes, improve decision-making accuracy, and enhance candidate experience through tools such as résumé screening, predictive analytics, and generative AI applications. However, issues of algorithmic bias, limited transparency, data quality, regulatory compliance, and workforce scepticism persist, particularly in SMEs that face resource constraints. Although much of the available evidence reflects Western contexts, this review broadens the scope by integrating global perspectives and highlighting how cultural and regional factors influence AI acceptance. The novelty of this study lies in combining academic and industry evidence to propose actionable strategies—such as bias audits, explainable AI frameworks, and human-in-the-loop approaches—for more inclusive, sustainable, and globally relevant adoption of AI in recruitment.por
dc.identifier.doi10.28991/ESJ-2025-09-06-030
dc.identifier.issn2610-9182
dc.identifier.urihttp://hdl.handle.net/10400.2/20657
dc.language.isoeng
dc.peerreviewedyes
dc.publisherItal Publication
dc.relationUID/50014/2025
dc.relation.hasversionhttps://ijournalse.org/index.php/ESJ/article/view/3514
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectArtificial intelligence
dc.subjectGenerative AI
dc.subjectLarge language models
dc.subjectHuman resource management
dc.subjectRecruitment
dc.subjectAI ethics
dc.subjectSMEs
dc.titleArtificial intelligence in recruitment: a multivocal review of benefits, challenges, and strategieseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage3485
oaire.citation.issue6
oaire.citation.startPage3458
oaire.citation.titleEmerging Science Journal
oaire.citation.volume9
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameTrovão
person.familyNameSão Mamede
person.familyNameTrigo
person.familyNameSantos
person.givenNameHugo
person.givenNameHenrique
person.givenNamePaulo
person.givenNameVitor
person.identifierR-002-0P0
person.identifier.ciencia-id7F17-9DAD-C007
person.identifier.ciencia-idF011-8BE3-FEB1
person.identifier.orcid0000-0002-6206-745X
person.identifier.orcid0000-0002-5383-9884
person.identifier.orcid0000-0001-5850-615X
person.identifier.orcid0000-0002-4223-7079
person.identifier.scopus-author-id36458782500
relation.isAuthorOfPublication4eba565e-6ae9-4573-874e-da193372f359
relation.isAuthorOfPublication86fd6131-eed5-42be-9639-9466ddf680ab
relation.isAuthorOfPublication42b2c089-37c5-46ac-9c49-e447fe17c6cf
relation.isAuthorOfPublicationcfae0b83-1a4d-4309-b607-38f32441fbd2
relation.isAuthorOfPublication.latestForDiscovery86fd6131-eed5-42be-9639-9466ddf680ab

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
AI in Recruitment.pdf
Tamanho:
5.7 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.97 KB
Formato:
Item-specific license agreed upon to submission
Descrição: