Logo do repositório
 
Publicação

An application of time series clustering using a combined distance

datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorMartins, Ana
dc.contributor.authorVaz, Daniel
dc.contributor.authorSilva, Tiago
dc.contributor.authorCardoso, Margarida
dc.contributor.authorCarvalho, Alda
dc.contributor.editorLoja, Amélia
dc.date.accessioned2026-01-29T11:00:04Z
dc.date.available2026-01-29T11:00:04Z
dc.date.issued2023
dc.description.abstractClustering time series aims at uncovering diverse longitudinal patterns. In this study we analyse time series of various parameters collected atop wind turbines in a wind farm in Portugal. Considering wind data in clustering may reveal differences in operation between neighbouring turbines, due to their position relative to one another and to terrain features. In this work, we use an approach to wind speed time series clustering based on a convex combination of distance measures between time series. For visualizing the resulting groups, we propose a graphical representation, Distance Matrix, which is quite more informative than the classical Multidimensional Scaling (MDS) map. This representation allows for quick comparisons between pairs of turbines for (dis)similarities. Our approach provides distinct insights regarding the differences between time series, emphasizing differences in values (Euclidean distance), trends (Pearson-based distance), and cyclical behaviours (Euclidean distance between periodograms and/or autocorrelation structures). In most cases, we found two groups, which were not always coincident with the geographical groups, but the proposed approach could also find the rationale behind the clusters that were formed. The results obtained may help identifying undesirable aerodynamic loads that the blades of a particular wind turbine may be subjected to, thereby shortening its time in-service.eng
dc.identifier.isbn978-989-99410-7-6
dc.identifier.urihttp://hdl.handle.net/10400.2/21083
dc.language.isoeng
dc.peerreviewedyes
dc.publisherAPMTAC – Associação Portuguesa de Mecânica Teórica, Aplicada e Computacional
dc.rights.uriN/A
dc.titleAn application of time series clustering using a combined distanceeng
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferenceDate2023
oaire.citation.conferencePlaceÉvora, Portugal
oaire.citation.title6th International Conference on Numerical and Symbolic Computation: Developments and Applications
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCarvalho
person.givenNameAlda
person.identifierAAA-4372-2021
person.identifier.ciencia-idFD18-CBDD-B7C7
person.identifier.orcid0000-0003-2642-4947
person.identifier.scopus-author-id25027091800
relation.isAuthorOfPublicationcb806308-9989-403b-97b7-42d77143f6d5
relation.isAuthorOfPublication.latestForDiscoverycb806308-9989-403b-97b7-42d77143f6d5

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
symcomp_2023.pdf
Tamanho:
1.18 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.97 KB
Formato:
Item-specific license agreed upon to submission
Descrição: