Repository logo
 
Publication

Modelação e previsão de um índice financeiro (FTSE 100)

dc.contributor.advisorNunes, Catarina S.
dc.contributor.advisorRamos, Maria do Rosário
dc.contributor.authorSilva, Manuela Margarida da Costa
dc.date.accessioned2016-07-11T13:26:30Z
dc.date.available2019-06-07T00:30:19Z
dc.date.issued2016-06-07
dc.date.submitted2016-07-11
dc.description.abstractA presente dissertação visa uma aplicação de séries temporais, na modelação do índice financeiro FTSE100. Com base na série de retornos, foram estudadas a estacionaridade através do teste Phillips-Perron, a normalidade pelo Teste Jarque-Bera, a independência analisada pela função de autocorrelação e pelo teste de Ljung-Box, e utilizados modelos GARCH, com a finalidade de modelar e prever a variância condicional (volatilidade) da série financeira em estudo. As séries temporais financeiras apresentam características peculiares, revelando períodos mais voláteis do que outros. Esses períodos encontram-se distribuídos em clusters, sugerindo um grau de dependência no tempo. Atendendo à presença de tais grupos de volatilidade (não linearidade), torna-se necessário o recurso a modelos heterocedásticos condicionais, isto é, modelos que consideram que a variância condicional de uma série temporal não é constante e dependente do tempo. Face à grande variabilidade das séries temporais financeiras ao longo do tempo, os modelos ARCH (Engle, 1982) e a sua generalização GARCH (Bollerslev, 1986) revelam-se os mais adequados para o estudo da volatilidade. Em particular, estes modelos não lineares apresentam uma variância condicional aleatória, sendo possível, através do seu estudo, estimar e prever a volatilidade futura da série. Por fim, é apresentado o estudo empírico que se baseia numa proposta de modelação e previsão de um conjunto de dados reais do índice financeiro FTSE100.pt_PT
dc.description.abstractThis dissertation aims at applying time series in modeling the financial index FTSE100. Based on the series of returns, were test undertaken for stationary behavior, applying the Phillips-Perron test, the unconditional distribution applying the Jarque-Bera Test, independence test was analyzed using the autocorrelation function and the Ljung-Box test, and used GARCH, in order to model and predict the conditional variance (volatility) of the financial series under study. Financial time series demonstrates peculiar characteristics, revealing the existence of more volatile periods than others. These periods are distributed in clusters, suggesting a degree of dependency on time. Given the presence of such volatility groups (non-linearity), it becomes necessary to resort to heteroscedastic conditional models, i.e. models that consider that the conditional variance of a time series is not constant and not time dependent. Given the high variability of the financial time series along the time, ARCH (Engle, 1982) and its generalization GARCH (Bollerslev, 1986) revealed that these are the most suited for the study of volatility. In particular, the non-linear models feature a random conditional variance, which is possible, to study its impact and estimate and predict future volatility of the series. Finally, the empirical study is based on a proposal for modeling and prediction of a set of real data from financial index FTSE100 is displayed.pt_PT
dc.identifier.citationSilva, Manuela Margarida da Costa - Modelação e previsão de um índice financeiro (FTSE 100). [S.l.] : [s.n.], 2016. 111 p.
dc.identifier.tid201216485
dc.identifier.urihttp://hdl.handle.net/10400.2/5419
dc.language.isoporpt_PT
dc.subjectMercados financeirospt_PT
dc.subjectGestão financeirapt_PT
dc.subjectPrevisãopt_PT
dc.subjectMétodos estatísticospt_PT
dc.subjectTime seriespt_PT
dc.subjectStationarypt_PT
dc.subjectDependencept_PT
dc.subjectGARCH modelspt_PT
dc.subjectFinancial indexpt_PT
dc.titleModelação e previsão de um índice financeiro (FTSE 100)pt_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameDissertação de Mestrado em Estatística, Matemática e Computação apresentada à Universidade Abertapt_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TMEMC_ManuelaSilva.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: