Publication
A bi-objective feature selection algorithm for large omics datasets
dc.contributor.author | Cavique, Luís | |
dc.contributor.author | Mendes, Armando B. | |
dc.contributor.author | Martiniano, Hugo F. M. C. | |
dc.contributor.author | Correia, Luís | |
dc.date.accessioned | 2018-11-06T14:00:31Z | |
dc.date.available | 2018-11-06T14:00:31Z | |
dc.date.issued | 2018 | |
dc.description | Special Issue: Fourth special issue on knowledge discovery and business intelligence. | pt_PT |
dc.description.abstract | Feature selection is one of the most important concepts in data mining when dimensionality reduction is needed. The performance measures of feature selection encompass predictive accuracy and result comprehensibility. Consistency based methods are a significant category of feature selection research that substantially improves the comprehensibility of the result using the parsimony principle. In this work, the bi-objective version of the algorithm Logical Analysis of Inconsistent Data is applied to large volumes of data. In order to deal with hundreds of thousands of attributes, heuristic decomposition uses parallel processing to solve a set covering problem and a cross-validation technique. The bi-objective solutions contain the number of reduced features and the accuracy. The algorithm is applied to omics datasets with genome-like characteristics of patients with rare diseases. | pt_PT |
dc.description.sponsorship | The authors would like to thank the FCT support UID/Multi/04046/2013. This work used the EGI, European Grid Infrastructure, with the support of the IBERGRID, Iberian Grid Infrastructure, and INCD (Portugal). | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12301 | pt_PT |
dc.identifier.issn | 0266-4720 | |
dc.identifier.issn | 1468-0394 | |
dc.identifier.uri | http://hdl.handle.net/10400.2/7648 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Wiley Online Library | pt_PT |
dc.subject | Feature selection | pt_PT |
dc.subject | Logical analysis of data | pt_PT |
dc.subject | Heuristic decomposition | pt_PT |
dc.subject | Bi-objective optimization | pt_PT |
dc.title | A bi-objective feature selection algorithm for large omics datasets | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FMulti%2F04046%2F2013/PT | |
oaire.citation.issue | 4 | pt_PT |
oaire.citation.startPage | e12301 | pt_PT |
oaire.citation.title | Expert Systems | pt_PT |
oaire.citation.volume | 35 | pt_PT |
oaire.fundingStream | 5876 | |
person.familyName | Cavique | |
person.familyName | B Mendes | |
person.familyName | Martiniano | |
person.familyName | Correia | |
person.givenName | Luís | |
person.givenName | Armando | |
person.givenName | Hugo Filipe de Mesquita Costa | |
person.givenName | Luís | |
person.identifier | 1008054 | |
person.identifier.ciencia-id | 911E-84AC-3956 | |
person.identifier.ciencia-id | EE1E-90E7-2751 | |
person.identifier.ciencia-id | 1E13-00FA-3C8B | |
person.identifier.ciencia-id | CC18-5389-6CBA | |
person.identifier.orcid | 0000-0002-5590-1493 | |
person.identifier.orcid | 0000-0003-3049-5852 | |
person.identifier.orcid | 0000-0003-2490-8913 | |
person.identifier.orcid | 0000-0003-2439-1168 | |
person.identifier.rid | N-7280-2015 | |
person.identifier.rid | R-7571-2017 | |
person.identifier.rid | M-3656-2013 | |
person.identifier.scopus-author-id | 13003839500 | |
person.identifier.scopus-author-id | 16743962700 | |
person.identifier.scopus-author-id | 56865595100 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 40906a16-46a2-42f1-b26d-7db7012294ee | |
relation.isAuthorOfPublication | d26eb57f-648e-485c-bd92-efcc8cb1b3be | |
relation.isAuthorOfPublication | 64ea6a03-f22d-4a28-9391-46a785f6790f | |
relation.isAuthorOfPublication | 527c9b62-536d-45b2-bce6-ac856844f41e | |
relation.isAuthorOfPublication.latestForDiscovery | d26eb57f-648e-485c-bd92-efcc8cb1b3be | |
relation.isProjectOfPublication | ab8b249f-48e9-42c8-8786-c1976e895516 | |
relation.isProjectOfPublication.latestForDiscovery | ab8b249f-48e9-42c8-8786-c1976e895516 |