Repository logo
 
Publication

A bi-objective feature selection algorithm for large omics datasets

dc.contributor.authorCavique, Luís
dc.contributor.authorMendes, Armando B.
dc.contributor.authorMartiniano, Hugo F. M. C.
dc.contributor.authorCorreia, Luís
dc.date.accessioned2018-11-06T14:00:31Z
dc.date.available2018-11-06T14:00:31Z
dc.date.issued2018
dc.descriptionSpecial Issue: Fourth special issue on knowledge discovery and business intelligence.pt_PT
dc.description.abstractFeature selection is one of the most important concepts in data mining when dimensionality reduction is needed. The performance measures of feature selection encompass predictive accuracy and result comprehensibility. Consistency based methods are a significant category of feature selection research that substantially improves the comprehensibility of the result using the parsimony principle. In this work, the bi-objective version of the algorithm Logical Analysis of Inconsistent Data is applied to large volumes of data. In order to deal with hundreds of thousands of attributes, heuristic decomposition uses parallel processing to solve a set covering problem and a cross-validation technique. The bi-objective solutions contain the number of reduced features and the accuracy. The algorithm is applied to omics datasets with genome-like characteristics of patients with rare diseases.pt_PT
dc.description.sponsorshipThe authors would like to thank the FCT support UID/Multi/04046/2013. This work used the EGI, European Grid Infrastructure, with the support of the IBERGRID, Iberian Grid Infrastructure, and INCD (Portugal).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doihttps://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12301pt_PT
dc.identifier.issn0266-4720
dc.identifier.issn1468-0394
dc.identifier.urihttp://hdl.handle.net/10400.2/7648
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherWiley Online Librarypt_PT
dc.subjectFeature selectionpt_PT
dc.subjectLogical analysis of datapt_PT
dc.subjectHeuristic decompositionpt_PT
dc.subjectBi-objective optimizationpt_PT
dc.titleA bi-objective feature selection algorithm for large omics datasetspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMulti%2F04046%2F2013/PT
oaire.citation.issue4pt_PT
oaire.citation.startPagee12301pt_PT
oaire.citation.titleExpert Systemspt_PT
oaire.citation.volume35pt_PT
oaire.fundingStream5876
person.familyNameCavique
person.familyNameB Mendes
person.familyNameMartiniano
person.familyNameCorreia
person.givenNameLuís
person.givenNameArmando
person.givenNameHugo Filipe de Mesquita Costa
person.givenNameLuís
person.identifier1008054
person.identifier.ciencia-id911E-84AC-3956
person.identifier.ciencia-idEE1E-90E7-2751
person.identifier.ciencia-id1E13-00FA-3C8B
person.identifier.ciencia-idCC18-5389-6CBA
person.identifier.orcid0000-0002-5590-1493
person.identifier.orcid0000-0003-3049-5852
person.identifier.orcid0000-0003-2490-8913
person.identifier.orcid0000-0003-2439-1168
person.identifier.ridN-7280-2015
person.identifier.ridR-7571-2017
person.identifier.ridM-3656-2013
person.identifier.scopus-author-id13003839500
person.identifier.scopus-author-id16743962700
person.identifier.scopus-author-id56865595100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication40906a16-46a2-42f1-b26d-7db7012294ee
relation.isAuthorOfPublicationd26eb57f-648e-485c-bd92-efcc8cb1b3be
relation.isAuthorOfPublication64ea6a03-f22d-4a28-9391-46a785f6790f
relation.isAuthorOfPublication527c9b62-536d-45b2-bce6-ac856844f41e
relation.isAuthorOfPublication.latestForDiscoveryd26eb57f-648e-485c-bd92-efcc8cb1b3be
relation.isProjectOfPublicationab8b249f-48e9-42c8-8786-c1976e895516
relation.isProjectOfPublication.latestForDiscoveryab8b249f-48e9-42c8-8786-c1976e895516

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LAID 2018 post-print.pdf
Size:
617.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: