Repository logo
 
Publication

A heuristic for the stability number of a graph based on convex quadratic programming and tabu search

dc.contributor.authorCavique, Luís
dc.contributor.authorLuz, Carlos J.
dc.date.accessioned2011-10-19T16:53:10Z
dc.date.available2011-10-19T16:53:10Z
dc.date.issued2009
dc.description.abstractRecently, a characterization of the Lov´asz theta number based on convex quadratic programming was established. As a consequence of this formulation, we introduce a new upper bound on the stability number of a graph that slightly improves the theta number. Like this number, the new bound can be characterized as the minimum of a function whose values are the optimum values of convex quadratic programs. This paper is oriented mainly to the following question: how can the new bound be used to approximate the maximum stable set for large graphs? With this in mind we present a two-phase heuristic for the stability problem that begins by computing suboptimal solutions using the new bound definition. In the second phase a multi-start tabu search heuristic is implemented. The results of applying this heuristic to some DIMACS benchmark graphs are reported.por
dc.identifier.citationCavique, Luís; Luz, Carlos J. - A heuristic for the stability number of a graph based on convex quadratic programming and tabu search. "Journal of Mathematical Sciences" [Em linha]. ISSN 1072-3374 (Print) 1573-8795 (Online). Vol. 161, nº 6, (2009), p. 944-955por
dc.identifier.issnISSN: 1072-3374 (print version)
dc.identifier.issnISSN: 1573-8795 (electronic version)
dc.identifier.urihttp://hdl.handle.net/10400.2/1901
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer New Yorkpor
dc.relation.publisherversionDOI: 10.1007/s10958-009-9613-xpor
dc.subjectStability number ofa graphpor
dc.subjectConvex quadratic programmingpor
dc.subjectTabu searchpor
dc.titleA heuristic for the stability number of a graph based on convex quadratic programming and tabu searchpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage955por
oaire.citation.issueJournal of Mathematical Sciences, vol. 161, number 6,por
oaire.citation.startPage944por
oaire.citation.titleJournal of Mathematical Sciencespor
person.familyNameCavique
person.givenNameLuís
person.identifier.ciencia-id911E-84AC-3956
person.identifier.orcid0000-0002-5590-1493
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication40906a16-46a2-42f1-b26d-7db7012294ee
relation.isAuthorOfPublication.latestForDiscovery40906a16-46a2-42f1-b26d-7db7012294ee

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2009 Lcv & Luz.pdf
Size:
241.46 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: