Repository logo
 
Publication

On the periodic orbits, shadowing and strong transitivity of continuous flows

dc.contributor.authorBessa, Mário
dc.contributor.authorTorres, Maria Joana
dc.contributor.authorVarandas, Paulo
dc.date.accessioned2023-05-26T11:33:19Z
dc.date.available2023-05-26T11:33:19Z
dc.date.issued2018
dc.description.abstractWe prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in Bomfim and Varandas (2015). In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationM. Bessa, M. J. Torres, P. Varandas, On the periodic orbits, shadowing and strong transitivity of continuous flows,Nonlinear Analysis, 175, 191-209, 2018pt_PT
dc.identifier.doi10.1016/j.na.2018.06.002pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.2/13864
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationCenter of Mathematics and Applications of University of Beira Interior
dc.relationCentre of Mathematics of the University of Minho
dc.subjectGluing orbit propertypt_PT
dc.subjectShadowingpt_PT
dc.subjectPeriodic orbitspt_PT
dc.titleOn the periodic orbits, shadowing and strong transitivity of continuous flowspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter of Mathematics and Applications of University of Beira Interior
oaire.awardTitleCentre of Mathematics of the University of Minho
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00212%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00013%2F2013/PT
oaire.citation.endPage209pt_PT
oaire.citation.startPage191pt_PT
oaire.citation.titleNonlinear Analysispt_PT
oaire.citation.volume175pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBessa
person.familyNameda Costa Cruz de Oliveira Torres
person.familyNameRodrigues Pinto Varandas
person.givenNameMário
person.givenNameMaria Joana
person.givenNamePaulo César
person.identifierhttps://scholar.google.com/citations?user=088yCR4AAAAJ&hl=pt-PT
person.identifier.ciencia-idC21A-EEC0-A3EF
person.identifier.ciencia-id4612-CB41-300A
person.identifier.ciencia-id0C1A-DC54-F959
person.identifier.orcid0000-0002-1758-2225
person.identifier.orcid0000-0002-3673-5776
person.identifier.orcid0000-0002-0902-8718
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2dd300f3-9f00-49de-9333-78ec0511220e
relation.isAuthorOfPublicationb2b301b8-4b6d-40b5-aaf1-b1ccc356d2cd
relation.isAuthorOfPublication0a313695-4c65-4365-97f5-29724b83019d
relation.isAuthorOfPublication.latestForDiscoveryb2b301b8-4b6d-40b5-aaf1-b1ccc356d2cd
relation.isProjectOfPublication3acb6818-ea04-40b6-a979-5a80a9419b10
relation.isProjectOfPublication34059dde-cd7d-4d91-a3c5-2c8117d5b3d8
relation.isProjectOfPublication.latestForDiscovery3acb6818-ea04-40b6-a979-5a80a9419b10

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Nonlinear_AnalysisTMA2.pdf
Size:
823.71 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: