| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 336.02 KB | Adobe PDF |
Autores
Orientador(es)
Resumo(s)
We prove that the closure of the closed orbits of a generic geodesic flow on a closed Riemannian n ≥ 2 dimensional manifold is a uniformly hyperbolic set if the shadowing property holds C2-robustly on the metric. We obtain analogous results using weak specification and the shadowing property allowing bounded time reparametrization.
Descrição
Palavras-chave
Geodesic flow Hyperbolic sets Shadowing Specification
Contexto Educativo
Citação
M. Bessa, J. L. Dias, M. J. Torres, Hyperbolicity through stable shadowing for generic geodesic flows, Physica D: Nonlinear Phenomena, 406, 132423, 2020
Editora
Elsevier
