Publication
Structure theorems for o-minimal expansions of groups
dc.contributor.author | Edmundo, Mário Jorge | |
dc.date.accessioned | 2014-01-07T21:32:21Z | |
dc.date.available | 2014-01-07T21:32:21Z | |
dc.date.issued | 2000-03 | |
dc.description.abstract | Let R be an o-minimal expansion of an ordered group (R,0,1,+,<) with distinguished positive element 1. We first prove that the following are equivalent: (1) R is semi-bounded, (2) R has no poles, (3) R cannot define a real closed field with domain R and order <, (4) R is eventually linear and (5) every R-definable set is a finite union of cones. As a corollary we get that Th(R) has quantifier elimination and universal axiomatization in the language with symbols for the ordered group operations, bounded R-definable sets and a symbol for each definable endomorphism of the group (R,0,+). | por |
dc.identifier.citation | Edmundo, Mário Jorge - Structure theorems for o-minimal expansions of groups. "Annals of Pure and Applied Logic" [Em linha]. ISSN 0168-0072. Vol. 102, Nº 1-2 (Mar. 2000), p. 1-30 | por |
dc.identifier.issn | 0168-0072 | |
dc.identifier.uri | http://hdl.handle.net/10400.2/2755 | |
dc.language.iso | eng | por |
dc.peerreviewed | yes | por |
dc.publisher | Elsevier | por |
dc.relation.publisherversion | http://ac.els-cdn.com/S0168007299000433/1-s2.0-S0168007299000433-main.pdf?_tid=d4fca9a4-77e2-11e3-b83b-00000aacb362&acdnat=1389130367_bf5fdb5c2a0acb3f2c17d84b1ff2d0dd | por |
dc.subject | O-minimal structures | por |
dc.subject | Structure theorems | por |
dc.title | Structure theorems for o-minimal expansions of groups | por |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 30 | por |
oaire.citation.startPage | 1 | por |
oaire.citation.title | Annals of Pure and Applied Logic | por |
rcaap.rights | openAccess | por |
rcaap.type | article | por |