Repository logo
 
Publication

Abundance of elliptic dynamics on conservative three-flows

dc.contributor.authorBessa, Mário
dc.contributor.authorDuarte, Pedro
dc.date.accessioned2023-05-25T09:37:52Z
dc.date.available2023-05-25T09:37:52Z
dc.date.issued2008
dc.description.abstractWe consider a compact three-dimensional boundaryless Riemannian manifold M and the set of divergence-free (or zero divergence) vector fields without singularities, then we prove that this set has a C 1-residual (dense G_δ) such that any vector field inside it is Anosov or else its elliptical orbits are dense in the manifold M. This is the flow-setting counterpart of Newhouse's Theorem 1.3 (S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Am. J. Math. 99 (1977), pp. 1061–1087). Our result follows from two theorems, the first one says that if Λ is a hyperbolic invariant set for some class C^1 zero divergence vector field X on M, then either X is Anosov, or else Λ has empty interior. The second one says that, if X is not Anosov, then for any open set U ⊆ M there exists Y arbitrarily close to X such that Y t has an elliptical closed orbit through U.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationM. Bessa, P. Duarte, Abundance of elliptic dynamics on conservative three-flows, Dynamical Systems, 23, 4, 409-424, 2008pt_PT
dc.identifier.doi10.1080/14689360802162872pt_PT
dc.identifier.eissn1468–9375
dc.identifier.issn1468–9367
dc.identifier.urihttp://hdl.handle.net/10400.2/13833
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherTaylor & Francispt_PT
dc.relationABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
dc.relation.publisherversionhttps://www.tandfonline.com/doi/abs/10.1080/14689360802162872pt_PT
dc.titleAbundance of elliptic dynamics on conservative three-flowspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBPD%2F20890%2F2004/PT
oaire.citation.endPage424pt_PT
oaire.citation.issue4pt_PT
oaire.citation.startPage409pt_PT
oaire.citation.titleDynamical Systemspt_PT
oaire.citation.volume23pt_PT
oaire.fundingStreamFARH
person.familyNameBessa
person.givenNameMário
person.identifierhttps://scholar.google.com/citations?user=088yCR4AAAAJ&hl=pt-PT
person.identifier.ciencia-idC21A-EEC0-A3EF
person.identifier.orcid0000-0002-1758-2225
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2dd300f3-9f00-49de-9333-78ec0511220e
relation.isAuthorOfPublication.latestForDiscovery2dd300f3-9f00-49de-9333-78ec0511220e
relation.isProjectOfPublication70c66b47-c078-45c2-aeb0-54e54cd1a24e
relation.isProjectOfPublication.latestForDiscovery70c66b47-c078-45c2-aeb0-54e54cd1a24e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DSIJ.pdf
Size:
171.49 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: