Repository logo
 
Publication

On embedding countable sets of endomorphisms

dc.contributor.authorAraújo, João
dc.contributor.authorMitchell, James D.
dc.contributor.authorSilva, Nuno
dc.date.accessioned2015-03-24T14:55:32Z
dc.date.available2015-03-24T14:55:32Z
dc.date.issued2003
dc.description.abstractSierpi´nski proved that every countable set of mappings on an infinite set X is contained in a 2-generated subsemigroup of the semigroup of all mappings on X. In this paper we prove that every countable set of endomorphisms of an algebra A which has an infinite basis (independent generating set) is contained in a 2-generated subsemigroup of the semigroup of all endomorphisms of A.por
dc.identifier.citationAraújo, João; Mitchell, James D.; Silva, Nuno - On embedding countable sets of endomorphisms. "Algebra Universalis" [Em linha]. ISSN 0002-5240 (Print) 1420-8911 (Online). Vol. 50 (2003), p. 1-6por
dc.identifier.issn0002-5240
dc.identifier.issn1420-8911
dc.identifier.urihttp://hdl.handle.net/10400.2/3810
dc.language.isoengpor
dc.peerreviewedyespor
dc.titleOn embedding countable sets of endomorphismspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage6por
oaire.citation.startPage1por
oaire.citation.titleAlgebra Universalispor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.givenNameJoão Jorge
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.orcid0000-0001-6655-2172
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2003OnEmbeding.pdf
Size:
371.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: