Repository logo
 
Publication

Embedding properties of endomorphism semigroups

dc.contributor.authorWehrug, Friedrich
dc.contributor.authorAraújo, João
dc.date.accessioned2011-12-13T11:41:00Z
dc.date.available2011-12-13T11:41:00Z
dc.date.issued2009
dc.description.abstractDenote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation monoid over a set Ω, and by Sub V (resp., End V ) the collection of all subspaces (resp., endomorphisms) of a vector space V . We prove various results that imply the following: (1) If card Ω 􏰆 2, then Self Ω has a semigroup embedding into the dual of SelfΓ iff cardΓ 􏰆 2cardΩ. In particular, if Ω has at least two elements, then there exists no semigroup embedding from Self Ω into the dual of PSelf Ω. (2) If V is infinite-dimensional, then there is no embedding from (Sub V, +) into (SubV,∩) and no embedding from (EndV,◦) into its dual semigroup. (3) Let F be an algebra freely generated by an infinite subset Ω. If F has less than 2card Ω operations, then End F has no semigroup em- bedding into its dual. The cardinality bound 2card Ω is optimal. (4) Let F be a free left module over a left א1-nœtherian ring (i.e., a ring without strictly increasing chains, of length א1, of left ideals). Then End F has no semigroup embedding into its dual. (1) and (2) above solve questions proposed by B. M. Schein and G. M. Bergman. We also formalize our results in the settings of algebras en- dowed with a notion of independence (in particular independence alge- bras).por
dc.identifier.citationWehrug, Friedrich; Araújo, João - Embedding properties of endomorphism semigroups. "Fundamenta Mathematicae" [Em linha]. ISSN 0016-2736 (Print) 1730-6329 (Online).Vol. 202, nº 2, p. 125-146por
dc.identifier.issn0016-2736
dc.identifier.urihttp://hdl.handle.net/10400.2/1990
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherWehrug, Institute of Mathematics, Polish Academy of Sciencespor
dc.relation.publisherversionhttp://journals.impan.pl/cgi-bin/doi?fm202-2-2por
dc.relation.publisherversionDoi:10.4064/fm202-2-2
dc.subjectTransformation monoidpor
dc.subjectEndomappor
dc.subjectSemigrouppor
dc.subjectEndomorphismpor
dc.subjectVector spacepor
dc.subjectLatticepor
dc.subjectC-independentpor
dc.subjectS-independentpor
dc.subjectM-independentpor
dc.subjectMatroidpor
dc.subjectSC-rankedpor
dc.titleEmbedding properties of endomorphism semigroupspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage146por
oaire.citation.startPage125por
oaire.citation.titleFundamenta Mathematicaepor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.givenNameJoão Jorge
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.orcid0000-0001-6655-2172
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
9.pdf
Size:
312.88 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: