Repository logo
 
Publication

Generalized beta models and population growth: so many routes to chaos

datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorBrilhante, Maria de Fátima
dc.contributor.authorGomes, Maria Ivette
dc.contributor.authorMendonça, Sandra
dc.contributor.authorPestana, Dinis
dc.contributor.authorPestana, Pedro Duarte
dc.date.accessioned2026-01-08T14:47:15Z
dc.date.available2026-01-08T14:47:15Z
dc.date.issued2023-01
dc.description.abstractLogistic and Gompertz growth equations are the usual choice to model sustainable growth and immoderate growth causing depletion of resources, respectively. Observing that the logistic distribution is geo-max-stable and the Gompertz function is proportional to the Gumbel max-stable distribution, we investigate other models proportional to either geo-max-stable distributions (log- logistic and backward log-logistic) or to other max-stable distributions (Fréchet or max-Weibull). We show that the former arise when in the hyper-logistic Blumberg equation, connected to the Beta (p, q) function, we use fractional exponents p − 1 = 1 ∓ 1/α and q − 1 = 1 ± 1/α, and the latter when in the hyper-Gompertz-Turner equation, the exponents of the logarithmic factor are real and eventually fractional. The use of a BetaBoop function establishes interesting connections to Probability Theory, Riemann–Liouville’s fractional integrals, higher-order monotonicity and convexity and generalized unimodality, and the logistic map paradigm inspires the investigation of the dynamics of the hyper- logistic and hyper-Gompertz maps.eng
dc.identifier.citationBrilhante, M.F., Gomes, M.I., Mendonça, S., Pestana, D. & Pestana, P.D. (2023). Generalized Beta Models and Population Growth: So Many Routes to Chaos. Fractal and Fractional. 7, 2, 40 p., 194.
dc.identifier.doi10.3390/fractalfract7020194
dc.identifier.issn2504-3110
dc.identifier.urihttp://hdl.handle.net/10400.2/20707
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBeta and BetaBoop
dc.subjectFractional Calculus
dc.subjectNonlinear Maps
dc.titleGeneralized beta models and population growth: so many routes to chaoseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.titleFractal and Fraccional
oaire.citation.volume7
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameUniversidade Aberta
person.familyNamePestana
person.givenNamePedro Duarte
person.identifier.ciencia-id2714-8A7B-5CCA
person.identifier.orcid0000-0002-3406-1077
person.identifier.ridE-7273-2016
person.identifier.scopus-author-id56074016300
relation.isAuthorOfPublication755592cd-7905-4c94-9eba-1bb83ce10355
relation.isAuthorOfPublication.latestForDiscovery755592cd-7905-4c94-9eba-1bb83ce10355

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fractalfract-07-00194-v2.pdf
Size:
8.97 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: