Repository logo
 
Publication

Economic impact of healthcare cyber risks

datacite.subject.fosCiências Naturais::Ciências da Computação e da Informação
datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg16:Paz, Justiça e Instituições Eficazes
dc.contributor.authorBrilhante, Maria de Fátima
dc.contributor.authorMendonça, Sandra
dc.contributor.authorPestana, Pedro Duarte
dc.contributor.authorRocha, Maria Luísa
dc.contributor.authorSantos, Rui
dc.date.accessioned2026-01-08T16:36:41Z
dc.date.available2026-01-08T16:36:41Z
dc.date.issued2025
dc.description.abstractPurpose: The healthcare sector is a primary target for cybercriminals, with health data breaches ranking among the most critical threats. Despite stringent penalties imposed by the U.S. Department of Health and Human Services Office for Civil Rights (OCR), vulnerabilities still persist due to slow detection and ineffective data protection measures. On the other hand, as organizations are often reluctant to disclose security breaches for fear of reputational and market share losses, penalties can serve as a useful proxy for quantifying losses and insurance claims. Methods: This study analyzes fines and settlements (2008–2024) using the traditional lognormal, general extreme value (GEV) and other heavy-tailed statistical models, including the geo-max-stable loglogistic law, and also the mixture models hyperexponential and hyperloglogistic. Results: Mixture models, either the hyperexponential or the hyperloglogistic, deliver the best fit for OCR penalties, and for yearly maxima, the best fit is achieved with the GEV distribution. Regarding Attorneys General fines, the hyperexponential model is optimal, with the GEV model excelling again for their yearly maxima. Hence, mixture models effectively capture the dual nature of penalty data, comprising clusters of moderate and extreme values. However, yearly maxima align better with the GEV model. Conclusions: The findings suggest that while Panjer’s theory for aggregate claims suffices for moderate claims, it must be supplemented with strategies to address extreme cybercrime scenarios, ensuring insurers and reinsurers can manage severe losses effectively.eng
dc.identifier.citationBrilhante, M.F., Mendonça, S., Pestana, P., Rocha, M.L. & Santos, R. (2025). Economic Impact of Healthcare Cyber Risks. Health and Technology, 15:635–650, Springer.
dc.identifier.doi10.1007/s12553-025-00964-w
dc.identifier.issn2190-7196
dc.identifier.urihttp://hdl.handle.net/10400.2/20716
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer
dc.rights.uriN/A
dc.subjectVulnerabilities
dc.subjectHealthcare breaches
dc.subjectCyber risk
dc.subjectInsurance
dc.subjectExtreme value theory
dc.titleEconomic impact of healthcare cyber riskseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage650
oaire.citation.issue15
oaire.citation.startPage635
oaire.citation.titleHealth and Technology
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameUniversidade Aberta
person.familyNameBrilhante
person.familyNamePestana
person.givenNameMaria de Fátima
person.givenNamePedro Duarte
person.identifier.ciencia-id2714-8A7B-5CCA
person.identifier.orcid0000-0001-9276-7011
person.identifier.orcid0000-0002-3406-1077
person.identifier.ridE-7273-2016
person.identifier.scopus-author-id56074016300
relation.isAuthorOfPublicationc7d7e495-4415-4e86-9ad6-c142069849c7
relation.isAuthorOfPublication755592cd-7905-4c94-9eba-1bb83ce10355
relation.isAuthorOfPublication.latestForDiscoveryc7d7e495-4415-4e86-9ad6-c142069849c7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
EconomicImpact_pub.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: